A220084 a(n) = (n + 1)*(20*n^2 + 19*n + 6)/6.
1, 15, 62, 162, 335, 601, 980, 1492, 2157, 2995, 4026, 5270, 6747, 8477, 10480, 12776, 15385, 18327, 21622, 25290, 29351, 33825, 38732, 44092, 49925, 56251, 63090, 70462, 78387, 86885, 95976, 105680, 116017, 127007, 138670, 151026, 164095, 177897, 192452
Offset: 0
Links
- Bruno Berselli, Table of n, a(n) for n = 0..1000
- Index entries for linear recurrences with constant coefficients, signature (4,-6,4,-1).
Crossrefs
Programs
-
Magma
[(n+1)*(20*n^2+19*n+6)/6: n in [0..40]]; // Bruno Berselli, Jun 28 2016
-
Magma
/* By first comment: */ A002413:=func
; [n*A002413(n)-(n-1)*A002413(n-1): n in [1..40]]; -
Magma
I:=[1,15,62,162]; [n le 4 select I[n] else 4*Self(n-1)-6*Self(n-2)+4*Self(n-3)-Self(n-4): n in [1..50]]; // Vincenzo Librandi, Aug 18 2013
-
Mathematica
Table[(n + 1) (20 n^2 + 19 n + 6)/6, {n, 0, 40}] LinearRecurrence[{4,-6,4,-1},{1,15,62,162},40] (* Harvey P. Dale, Dec 23 2012 *) CoefficientList[Series[(1 + 11 x + 8 x^2) / (1 - x)^4, {x, 0, 40}], x] (* Vincenzo Librandi, Aug 18 2013 *)
-
Maxima
makelist((n+1)*(20*n^2+19*n+6)/6, n, 0, 20); /* Martin Ettl, Dec 12 2012 */
-
PARI
a(n)=(n+1)*(20*n^2+19*n+6)/6 \\ Charles R Greathouse IV, Oct 07 2015
Formula
G.f.: (1+11*x+8*x^2)/(1-x)^4.
a(n) = 4*a(n-1) - 6*a(n-2) + 4*a(n-3) - a(n-4), for n>3, a(0)=1, a(1)=15, a(2)=62, a(3)=162. - Harvey P. Dale, Dec 23 2012
E.g.f.: exp(x)*(6 + 84*x + 99*x^2 + 20*x^3)/6. - Elmo R. Oliveira, Aug 06 2025
Comments