cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-4 of 4 results.

A224701 Table read by antidiagonals of numbers of form (2^n - 1)*2^(m+3) + 5 where n>=1, m>=1.

Original entry on oeis.org

21, 37, 53, 69, 101, 117, 133, 197, 229, 245, 261, 389, 453, 485, 501, 517, 773, 901, 965, 997, 1013, 1029, 1541, 1797, 1925, 1989, 2021, 2037, 2053, 3077, 3589, 3845, 3973, 4037, 4069, 4085, 4101, 6149, 7173, 7685, 7941, 8069, 8133, 8165, 8181, 8197, 12293, 14341, 15365, 15877, 16133
Offset: 1

Views

Author

Brad Clardy, Apr 16 2013

Keywords

Comments

The table has row labels 2^n - 1 and column labels 2^(m+3). The table entry is row*col + 5. A MAGMA program is provided that generates the numbers in a table format. The sequence is read along the antidiagonals starting from the top left corner. Using the lexicographic ordering of A057555 the sequence is:
A(n) = Table(i,j) with (i,j)=(1,1),(1,2),(2,1),(1,3),(2,2),(3,1)...
+5 | 16 32 64 128 256 512 1024 ...
----|-------------------------------------------
1 | 21 37 69 133 261 517 1029
3 | 53 101 197 389 773 1541 3077
7 | 117 229 453 901 1797 3589 7173
15 | 245 485 965 1925 3845 7685 15365
31 | 501 997 1989 3973 7941 15877 31749
63 | 1013 2021 4037 8069 16133 32261 64517
127 | 2037 4069 8133 16261 32517 65029 130053
...
All of these numbers have the following property: let m be a member of A(n); if a sequence B(n) = all i such that i XOR (m - 1) = i - (m - 1), then the differences between successive members of B(n) is a repeating series
of 1,1,1,5 ending with 1,1,1 and the last difference in the pattern m. The total number of 1's and 5's in the pattern is 2^(j+2) - 1, where j is the column index.
As an example, consider A(1), which is 21; the sequence B(n) where i XOR 20 = i - 20 starts as 20, 21, 22, 23, 28, 29, 30, 31, 52, ... with successive differences of 1, 1, 1, 5, 1, 1, 1, 21.
for A(2), which is 37, the sequence B(n) where i XOR 36 = i - 36 starts as 36, 37, 38, 39, 44, 45, 46, 47, 52, 53, 54, 55, 60, 61, 62, 63, 100, ... with successive differences of 1, 1, 1, 5, 1, 1, 1, 5, 1, 1, 1, 5, 1, 1, 1, 37.

Crossrefs

Cf. A057555 (lexicographic ordering).
Rows: A168614(i=1), n>=4.
Cols: A220087(j=2), n>=6.

Programs

  • Magma
    //program generates values in a table form, row labels of 2^i -1
    for i:=1 to 10 do
        m:=2^i - 1;
        m, [ m*2^(n+3) +5 : n in [1..10]];
    end for;
    //program generates sequence in lexicographic ordering of A057555, read
    //along antidiagonals from top. Primes in the sequence are marked with *.
    for i:=2 to 18 do
        for j:=1 to i-1 do
           m:=2^j -1;
           k:=m*2^(3+i-j) + 5;
           if IsPrime(k) then k, "*";
              else k;
           end if;
        end for;
    end for;

Formula

a(n) = 2^(A057555(2*n - 1))*2^(A057555(2*n) + 3) + 5 for n>=1.

A254027 Table T(n,k) = 3^n - 2^k read by antidiagonals.

Original entry on oeis.org

0, 2, -1, 8, 1, -3, 26, 7, -1, -7, 80, 25, 5, -5, -15, 242, 79, 23, 1, -13, -31, 728, 241, 77, 19, -7, -29, -63, 2186, 727, 239, 73, 11, -23, -61, -127, 6560, 2185, 725, 235, 65, -5, -55, -125, -255, 19682, 6559, 2183, 721, 227, 49, -37, -119, -253, -511, 59048, 19681, 6557, 2179, 713, 211, 17, -101, -247, -509, -1023
Offset: 0

Views

Author

K. G. Stier, Jan 22 2015

Keywords

Comments

Table shows differences of a given power of 3 to the powers of 2 (columns), and differences of the powers of 3 to a given power of 2 (rows), respectively.
Note that positive terms (table's upper right area) and negative terms (lower left area) are separated by an imaginary line with slope -log(3)/log(2) = -1.5849625.. (see A020857). This "border zone" of the table is of interest in terms of how close powers of 3 and powers of 2 can get: i.e., those T(n,k) where k/n is a good rational approximation to log(3)/log(2), see A254351 for numerators k and respective A060528 for denominators n.

Examples

			Table begins
   0    2   8  26  80..
  -1    1   7  25  79..
  -3   -1   5  23  73..
  -7   -5   1  19  65..
  -15 -13  -7  11  49..
  ..   ..  ..  ..  ..
		

Crossrefs

Row 0 (=3^n-1) is A024023.
Row 1 (=3^n-2) is A058481.
Row 2 (=3^n-4) is A168611.
Column 0 (=1-2^n) is (-1)A000225.
Column 1 (=3-2^n) is (-1)A036563.
Column 2 (=9-2^n) is (-1)A185346.
Column 3 (=27-2^n) is (-1)A220087.
0,0-Diagonal (=3^n-2^n) is A001047.
1,0-Diagonal (=3^n-2^(n-1)) for n>0 is A083313 or A064686.
0,1-Diagonal (=3^n-2^(n+1)) is A003063.
0,2-Diagonal (=3^n-2^(n+2)) is A214091.

Programs

  • Mathematica
    Table[3^(n-k) - 2^k, {n, 0, 10}, {k, 0, n}] // Flatten (* Jean-François Alcover, Dec 18 2017 *)
  • PARI
    for(i=0, 10, {
         for(j=0, i, print1((3^(i-j)-2^j),", "))
    });

A220088 a(n) = 2^n - 81.

Original entry on oeis.org

-80, -79, -77, -73, -65, -49, -17, 47, 175, 431, 943, 1967, 4015, 8111, 16303, 32687, 65455, 130991, 262063, 524207, 1048495, 2097071, 4194223, 8388527, 16777135, 33554351, 67108783, 134217647, 268435375, 536870831, 1073741743, 2147483567, 4294967215
Offset: 0

Views

Author

Andreas Rieber, Dec 04 2012

Keywords

Crossrefs

Programs

  • Mathematica
    Table[2^n - 81, {n, 0, 40}] (* T. D. Noe, Dec 04 2012 *)

Formula

From Chai Wah Wu, Jan 17 2020: (Start)
a(n) = 3*a(n-1) - 2*a(n-2) for n > 1.
G.f.: (161*x - 80)/((x - 1)*(2*x - 1)). (End)
From Elmo R. Oliveira, Nov 11 2023: (Start)
a(n) = 2*a(n-1) + 81 with a(0) = -80.
E.g.f.: exp(2*x) - 81*exp(x). (End)

A220089 a(n) = 2^n - 243.

Original entry on oeis.org

-242, -241, -239, -235, -227, -211, -179, -115, 13, 269, 781, 1805, 3853, 7949, 16141, 32525, 65293, 130829, 261901, 524045, 1048333, 2096909, 4194061, 8388365, 16776973, 33554189, 67108621, 134217485, 268435213, 536870669, 1073741581, 2147483405, 4294967053
Offset: 0

Views

Author

Andreas Rieber, Dec 04 2012

Keywords

Crossrefs

Programs

  • Mathematica
    Table[2^n - 243, {n, 0, 40}] (* T. D. Noe, Dec 04 2012 *)

Formula

From Chai Wah Wu, Jan 17 2020: (Start)
a(n) = 3*a(n-1) - 2*a(n-2) for n > 1.
G.f.: (485*x - 242)/((x - 1)*(2*x - 1)). (End)
From Elmo R. Oliveira, Nov 11 2023: (Start)
a(n) = 2*a(n-1) + 243 with a(0) = -242.
E.g.f.: exp(2*x) - 243*exp(x). (End)
Showing 1-4 of 4 results.