cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A002881 Number of simple imperfect squared rectangles of order n up to symmetry.

Original entry on oeis.org

0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 9, 34, 104, 283, 953, 3029, 9513, 30359, 98969, 323646, 1080659, 3668432, 12608491, 43745771, 153812801
Offset: 1

Views

Author

Keywords

Comments

A squared rectangle (which may be a square) is a rectangle dissected into a finite number, two or more, of squares. If no two of these squares have the same size, the squared rectangle is perfect. A squared rectangle is simple if it does not contain a smaller squared rectangle. The order of a squared rectangle is the number of its constituent squares. [Geoffrey H. Morley, Oct 17 2012]

References

  • C. J. Bouwkamp, personal communication.
  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
  • W. T. Tutte, Squaring the Square, in M. Gardner's "Mathematical Games" column in Scientific American 199, Nov. 1958, pp. 136-142, 166, Reprinted with addendum and bibliography in the US in M. Gardner, The 2nd Scientific American Book of Mathematical Puzzles & Diversions, Simon and Schuster, New York (1961), pp. 186-209, 250 [sequence on p. 207], and in the UK in M. Gardner, More Mathematical Puzzles and Diversions, Bell (1963) and Penguin Books (1966), pp. 146-164, 186-187 [sequence on p. 162].

Crossrefs

Formula

a(n) = A002962(n) + A220165(n).

Extensions

Edited ("simple" added to the definition, definition of "simple" given in the comments), terms a(13), a(15), a(16), a(17), and a(18) corrected, and terms extended to a(20) by Stuart E Anderson, Mar 09 2011
a(16)-a(20) corrected (excess compounds removed) by Stuart E Anderson, Apr 10 2011
Sequence reverted to the one in Bouwkamp et al. (1960), Gardner (1961), Sloane (1973), and Sloane & Plouffe (1995), which includes simple imperfect squares, by Geoffrey H. Morley, Oct 17 2012
a(19)-a(20) corrected, a(21)-a(24) added by Stuart E Anderson, Dec 03 2012
a(25) from Stuart E Anderson, May 07 2024
a(26) from Stuart E Anderson, Jul 28 2024

A220166 Number of nonsquare simple squared rectangles of order n up to symmetry.

Original entry on oeis.org

0, 0, 0, 0, 0, 0, 0, 0, 3, 6, 22, 76, 246, 848, 2889, 9964, 34440, 119875, 420525, 1482802, 5254679, 18713933, 66968081, 240735712
Offset: 1

Views

Author

Stuart E Anderson, Dec 06 2012

Keywords

Comments

A squared rectangle (which may be a square) is a rectangle dissected into a finite number, two or more, of integer sized squares. If no two of these squares have the same size the squared rectangle is perfect. A squared rectangle is simple if it does not contain a smaller squared rectangle. The order of a squared rectangle is the number of constituent squares. This sequence counts nonsquare simple perfect squared rectangles and nonsquare simple imperfect squared rectangles.

References

Crossrefs

Extensions

a(9)-a(24) from Stuart E Anderson Dec 07 2012

A220167 Number of simple squared rectangles of order n up to symmetry.

Original entry on oeis.org

3, 6, 22, 76, 247, 848, 2892, 9969, 34455, 119894, 420582, 1482874, 5254954, 18714432, 66969859, 240739417
Offset: 1

Views

Author

Stuart E Anderson, Dec 06 2012

Keywords

Comments

A squared rectangle is a rectangle dissected into a finite number of integer-sized squares. If no two of these squares are the same size then the squared rectangle is perfect. A squared rectangle is simple if it does not contain a smaller squared rectangle or squared square. The order of a squared rectangle is the number of squares into which it is dissected. [Edited by Stuart E Anderson, Feb 03 2024]

References

Crossrefs

Formula

a(n) = A002839(n) + A002881(n).
a(n) = A006983(n) + A002962(n) + A220165(n) + A219766(n).
Conjecture: a(n) ~ n^(-5/2) * 4^n / (243*sqrt(Pi)), from "A Census of Planar Maps", p. 267, where William Tutte gave a conjectured asymptotic formula for the number of perfect squared rectangles where n is the number of elements in the dissection (the order). [Corrected by Stuart E Anderson, Feb 03 2024]

Extensions

a(9)-a(24) from Stuart E Anderson, Dec 07 2012
Showing 1-3 of 3 results.