A220167 Number of simple squared rectangles of order n up to symmetry.
3, 6, 22, 76, 247, 848, 2892, 9969, 34455, 119894, 420582, 1482874, 5254954, 18714432, 66969859, 240739417
Offset: 1
Links
- S. E. Anderson, Simple Perfect Squared Rectangles. [Nonsquare rectangles only]
- S. E. Anderson, Simple Perfect Squared Squares.
- S. E. Anderson, Simple Imperfect Squared Rectangles. [Nonsquare rectangles only]
- S. E. Anderson, Simple Imperfect Squared Squares.
- W. T. Tutte, A Census of Planar Maps, Canad. J. Math. 15 (1963), 249-271.
Formula
Conjecture: a(n) ~ n^(-5/2) * 4^n / (243*sqrt(Pi)), from "A Census of Planar Maps", p. 267, where William Tutte gave a conjectured asymptotic formula for the number of perfect squared rectangles where n is the number of elements in the dissection (the order). [Corrected by Stuart E Anderson, Feb 03 2024]
Extensions
a(9)-a(24) from Stuart E Anderson, Dec 07 2012
Comments