A220182 Number of changes of parity in the Collatz trajectory of n.
0, 1, 4, 1, 2, 5, 10, 1, 12, 3, 8, 5, 4, 11, 10, 1, 6, 13, 12, 3, 2, 9, 8, 5, 14, 5, 82, 11, 10, 11, 78, 1, 16, 7, 6, 13, 12, 13, 22, 3, 80, 3, 18, 9, 8, 9, 76, 5, 14, 15, 14, 5, 4, 83, 82, 11, 20, 11, 20, 11, 10, 79, 78, 1, 16, 17, 16, 7, 6, 7, 74, 13, 84, 13
Offset: 1
Examples
For n=5, Collatz trajectory for 5 is: 5,16,8,4,2,1; hence the number of transitions between odd and even parity is a(5)=2. Similarly for n=11, Collatz trajectory gives 11,34,17,52,26,13,40,20,10,5,16,8,4,2,1; implies that a(11)=8.
References
- R. K. Guy, Unsolved Problems in Number Theory, E16
Links
Programs
-
Mathematica
Collatz[n_] := NestWhileList[If[EvenQ[#], #/2, 3 # + 1] &, n, # > 1 &]; parity[n_] := If[OddQ[n], 1, 0]; Table[p = parity /@ Collatz[n]; If[OddQ[n], 2*Total[p] - 2, 2*Total[p] - 1], {n, 100}] (* T. D. Noe, Feb 24 2013 *)
-
PARI
next_iter(n) = if(n%2==0, return(n/2), return(3*n+1)) parity(n) = n%2 a(n) = my(x=n, par=parity(x), i=0); while(x > 1, x=next_iter(x); if(parity(x)!=par, i++; par=parity(x))); i \\ Felix Fröhlich, Jun 02 2019
Formula
a(n) = a(A139391(n)) + (n mod 2) + 1 for n >= 2. - Alan Michael Gómez Calderón, Apr 01 2025
Comments