A220237 Triangle read by rows: sorted terms of Collatz trajectories.
1, 1, 2, 1, 2, 3, 4, 5, 8, 10, 16, 1, 2, 4, 1, 2, 4, 5, 8, 16, 1, 2, 3, 4, 5, 6, 8, 10, 16, 1, 2, 4, 5, 7, 8, 10, 11, 13, 16, 17, 20, 22, 26, 34, 40, 52, 1, 2, 4, 8, 1, 2, 4, 5, 7, 8, 9, 10, 11, 13, 14, 16, 17, 20, 22, 26, 28, 34, 40, 52, 1, 2, 4, 5, 8, 10, 16
Offset: 1
Examples
The table begins: . 1: [1] . 2: [1,2] . 3: [1,2,3,4,5,8,10,16] . 4: [1,2,4] . 5: [1,2,4,5,8,16] . 6: [1,2,3,4,5,6,8,10,16] . 7: [1,2,4,5,7,8,10,11,13,16,17,20,22,26,34,40,52] . 8: [1,2,4,8] . 9: [1,2,4,5,7,8,9,10,11,13,14,16,17,20,22,26,28,34,40,52] . 10: [1,2,4,5,8,10,16] . 11: [1,2,4,5,8,10,11,13,16,17,20,26,34,40,52] . 12: [1,2,3,4,5,6,8,10,12,16] .
Links
Programs
-
Haskell
import Data.List (sort) a220237 n k = a220237_tabf !! (n-1) !! (k-1) a220237_row n = a220237_tabf !! (n-1) a220237_tabf = map sort a070165_tabf
-
Maple
T:= proc(n) option remember; `if`(n=1, 1, sort([n, T(`if`(n::even, n/2, 3*n+1))])[]) end: seq(T(n), n=1..10); # Alois P. Heinz, Oct 16 2021
-
Mathematica
Flatten[Table[Sort[NestWhileList[If[EvenQ[#],#/2,3#+1]&,n,#>1&]],{n,12}]] (* Harvey P. Dale, Jan 28 2013 *)
Comments