cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A220264 Smallest integer with exactly n semiprime divisors.

Original entry on oeis.org

1, 4, 12, 30, 60, 180, 210, 420, 1260, 6300, 2310, 4620, 13860, 69300, 485100, 30030, 60060, 180180, 900900, 6306300, 69369300, 510510, 1021020, 3063060, 15315300, 107207100, 1179278100, 15330615300, 9699690, 19399380, 58198140, 290990700, 2036934900, 22406283900
Offset: 0

Views

Author

Robert G. Wilson v, Dec 09 2012

Keywords

Comments

At the Mar 31 2011 suggestion of Zak Seidov in A086971.
Often a(n+1) = k*a(n) for some integer k.
All terms are cubefree products of primorials (A025487 INTERSECT A004709). - Charles R Greathouse IV, Dec 11 2012
A086971(a(n)) = n and A086971(m) != n for m < a(n). - Reinhard Zumkeller, Dec 14 2012

Crossrefs

Subsequence of A220423.

Programs

  • Haskell
    import Data.List (find); import Data.Maybe (fromJust)
    a220264 n = fromJust $ find ((== n) . a086971) a220423_list
    -- Reinhard Zumkeller, Sep 08 2015
  • Mathematica
    semiPrimeQ[n_] := PrimeOmega@ n == 2; f[n_] := Length@ Select[Divisors@ n, semiPrimeQ@# &]; t = Table[0, {50}]; k = 1; While[k < 10^7, a = f@ k; If[t[[a]] == 0, t[[a]] = k; Print[{a, k}]]; k++]; t
  • PARI
    prim(n)=my(v=primes(n));prod(i=1,#v,v[i])
    a(n)=if(n>1,my(L=(sqrtint(8*n+1)+1)\2);prim(L)*prim(n-binomial(L,2)),1+3*n) \\ Charles R Greathouse IV, Dec 11 2012
    

Extensions

a(25)-a(26) from Donovan Johnson, Dec 10 2012
a(27)-a(41) from Charles R Greathouse IV, Dec 11 2012