cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A220412 Triangle read by rows, the coefficients of J. L. Fields generalized Bernoulli polynomials.

Original entry on oeis.org

1, 0, 1, 0, 1, 5, 0, 4, 21, 35, 0, 18, 101, 210, 175, 0, 48, 286, 671, 770, 385, 0, 33168, 207974, 531531, 715715, 525525, 175175, 0, 8640, 56568, 154466, 231231, 205205, 105105, 25025, 0, 1562544, 10615548, 30582796, 49534277, 49689640, 31481450, 11911900
Offset: 0

Views

Author

Peter Luschny, Dec 30 2012

Keywords

Comments

The Fields polynomials are defined: F_{2*n}(x) = sum(k=0..n, x^k*T(n,k)/A220411(n)) and F_{2*n+1}(x) = 0. See A220002 for an application to the asymptotic expansion of the Catalan numbers.

Examples

			The coefficients T(n,k):
[0], [1]
[1], [0,  1]
[2], [0,  1,   5]
[3], [0,  4,  21,  35]
[4], [0, 18, 101, 210, 175]
[5], [0, 48, 286, 671, 770, 385]
The Fields polynomials:
F_0 (x) =  1 / 1
F_2 (x) =  x / (-6)
F_4 (x) = (5*x^2+x) / 60
F_6 (x) = (35*x^3+21*x^2+4*x) / (-504)
F_8 (x) = (175*x^4+210*x^3+101*x^2+18*x) / 2160
F_10(x) = (385*x^5+770*x^4+671*x^3+286*x^2+48*x) / (-3168)
		

References

  • Y. L. Luke, The Special Functions and their Approximations, Vol. 1. Academic Press, 1969, page 34.

Crossrefs

Cf. A220411.

Programs

  • Maple
    FieldsPoly := proc(n,x) local recP, P; recP := proc(n,x) option remember; local k; if n = 0 then return(1) fi; -2*x*add(binomial(n-1,2*k+1)* bernoulli(2*k+2)/(2*k+2)*recP(n-2*k-2,x), k=0..(n/2-1)) end:
    P := recP(n,x); (-1)^iquo(n,2)*denom(P); sort(expand(P*%)) end:
    with(PolynomialTools): A220412_row := n -> CoefficientList(FieldsPoly( 2*i,x),x): seq(A220412_row(i),i=0..8);
  • Mathematica
    F[0, ] = 1; F[n, x_] := F[n, x] = -2*x*Sum[Binomial[n-1, 2*k+1]*BernoulliB[2*k+2]/(2*k+2)*F[n-2*k-2, x], {k, 0, n/2-1}]; t[n_, k_] := Coefficient[(-1)^Mod[n, 2]*F[2*n, x] // Together // Numerator, x, k]; Table[t[n, k], {n, 0, 8}, {k, 0, n}] // Flatten (* Jean-François Alcover, Jan 09 2014 *)
  • Sage
    @CachedFunction
    def FieldsPoly(n):
        A = PolynomialRing(QQ, 'x')
        x = A.gen()
        if n == 0: return A(1)
        return -2*x*add(binomial(n-1,2*k+1)*bernoulli(2*k+2)/(2*k+2)*FieldsPoly(n-2*k-2) for k in (0..n-1))
    def FieldsCoeffs(n):
        P = FieldsPoly(n)
        d = (-1)^(n//2) * denominator(P)
        return list(d * P)
    A220412_row = lambda n: FieldsCoeffs(2*n)

Formula

See Y. L. Luke 2.8(3) for the generalized Bernoulli polynomials and 2.11(16) for the special case of Fields polynomials. The Maple and Sage programs give a recursive definition.

A006934 A series for Pi.

Original entry on oeis.org

1, 1, 21, 671, 180323, 20898423, 7426362705, 1874409467055, 5099063967524835, 2246777786836681835, 2490122296790918386363, 1694873049836486741425113, 5559749161756484280905626951, 5406810236613380495234085140851, 12304442295910538475633061651918089
Offset: 0

Views

Author

Keywords

Comments

Formula (21) in Luke (see ref.): Let y = 4*n+1. Then for n -> oo
Pi ~ 4*(n!)^4*2^(4*n)/(y*((2*n)!)^2)*(sum_{k>=0}((-1)^k*y^(-2*k)* A006934(k)/A123854(k)))^2. (Luke does not reference the sequences in this form.) - Peter Luschny, Mar 23 2014
This might be related to the numerators of eq. (18) in N. Elezovic' "Asymptotic Expansions of Central Binomial...", J. Int. Seq. 17 (2014) # 14.2.1. - R. J. Mathar, Mar 23 2014
Several references give an erroneous value of 1874409465055 instead of a(7) in the formula for pi. - M. F. Hasler, Mar 23 2014

References

  • Y. L. Luke, The Special Functions and their Approximation, Vol. 1, Academic Press, NY, 1969, see p. 36.
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Programs

  • Maple
    A006934_list := proc(n) local k, f, bp;
    bp := proc(n,x) option remember; local k; if n = 0 then 1 else -x*add(binomial(n-1,2*k+1)*bernoulli(2*k+2)/(k+1)*bp(n-2*k-2,x), k=0..n/2-1) fi end:
    f := n -> 2^(3*n-add(i, i=convert(n,base,2)));
    add(bp(2*k,1/4)*binomial(4*k,2*k)*x^(2*k), k=0..n-1);
    seq((-1)^k*f(k)*coeff(%,x,2*k), k=0..n-1) end:
    A006934_list(15);  # Peter Luschny, Mar 23 2014
    # Second solution, without using Nörlund's generalized Bernoulli polynomials, based on Euler numbers:
    A006934_list := proc(n) local a,c,j;
    c := n -> 4^n/2^add(i, i=convert(n,base,2));
    a := [seq((-4)^j*euler(2*j)/(4*j), j=1..n)];
    expand(exp(add(a[j]*x^(-j), j=1..n))); taylor(%, x=infinity, n+2);
    subs(x=1/x, convert(%,polynom)): seq(c(iquo(j,2))*coeff(%,x,j), j=0..n) end:
    A006934_list(14); # Peter Luschny, Apr 08 2014
  • Mathematica
    A006934List[n_] := Module[{c, a, s, sx}, c[k_] := 4^k/2^Total[ IntegerDigits[k, 2]]; a = Table[(-4)^j EulerE[2j]/(4j), {j, 1, n}]; s[x_] = Series[Exp[Sum[a[[j]] x^(-j), {j, 1, n}]], {x, Infinity, n+2}] // Normal; sx = s[1/x]; Table[c[Quotient[j, 2]] Coefficient[sx, x, j], {j, 0, n}]];
    A006934List[14] (* Jean-François Alcover, Jun 02 2019, from second Maple program *)
  • Sage
    @CachedFunction
    def p(n):
        if n < 2: return 1
        return -add(binomial(n-1,k-1)*bernoulli(k)*p(n-k)/k for k in range(2,n+1,2))/2
    def A006934(n): return (-1)^n*p(2*n)*binomial(4*n,2*n)*2^(3*n-sum(n.digits(2)))
    [A006934(n) for n in (0..14)]  # Peter Luschny, Mar 24 2014

Formula

Let p(n,x) = sum(k=0..n, x^k*A220412(n,k))/A220411(n) then a(n) = (-1)^n*p(n,1/4)*A123854(n)*A001448(n). - Peter Luschny, Mar 23 2014
Pi = lim_{n->oo} 2^{4n+2}/((4n+1)*C(2n,n)^2)*(sum_{k=0..oo} (-1)^k*a(k)/(A123854(k)*(4n+1)^{2k}))^2. - M. F. Hasler, Mar 23 2014

Extensions

a(7) corrected, a(8)-a(14) from Peter Luschny, Mar 23 2014

A276997 Denominators of coefficients of polynomials arising from applying the complete Bell polynomials to k!B_k(x)/(k*(k-1)) with B_k(x) the Bernoulli polynomials.

Original entry on oeis.org

1, 1, 1, 6, 1, 1, 1, 2, 2, 1, 60, 1, 1, 1, 1, 1, 6, 2, 3, 1, 1, 504, 4, 4, 1, 1, 1, 1, 1, 24, 8, 12, 2, 2, 2, 1, 2160, 18, 9, 3, 2, 1, 3, 1, 1, 1, 60, 4, 6, 1, 5, 1, 1, 1, 1, 3168, 48, 16, 6, 3, 2, 2, 1, 2, 1, 1, 1, 288, 32, 144, 12, 12, 4, 2, 1, 6, 2, 1
Offset: 0

Views

Author

Peter Luschny, Oct 01 2016

Keywords

Comments

For formulas and references see A276996.
Compare T(n,0) with A220411.

Examples

			Triangle starts:
     1;
     1,  1;
     6,  1,  1;
     1,  2,  2,  1;
    60,  1,  1,  1, 1;
     1,  6,  2,  3, 1, 1;
   504,  4,  4,  1, 1, 1, 1;
     1, 24,  8, 12, 2, 2, 2, 1;
  2160, 18,  9,  3, 2, 1, 3, 1, 1;
		

Crossrefs

Cf. A276996 (numerators), A220411.

Programs

  • Maple
    A276997_row := proc(n) local p;
    p := (n,x) -> CompleteBellB(n,0,seq((k-2)!*bernoulli(k,x),k=2..n)):
    seq(denom(coeff(p(n,x),x,k)), k=0..n) end:
    seq(A276997_row(n), n=0..11);
  • Mathematica
    CompleteBellB[n_, zz_] := Sum[BellY[n, k, zz[[1 ;; n-k+1]]], {k, 1, n}];
    p[n_, x_] := CompleteBellB[n, Join[{0}, Table[(k-2)! BernoulliB[k, x], {k, 2, n}]]];
    row[0] = {1}; row[1] = {1, 1}; row[n_] := CoefficientList[p[n, x], x] // Denominator;
    Table[row[n], {n, 0, 11}] // Flatten (* Jean-François Alcover, Sep 09 2018 *)
Showing 1-3 of 3 results.