cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A219224 G.f.: exp( Sum_{n>=1} A005063(n)*x^n/n ), where A005063(n) = sum of squares of primes dividing n.

Original entry on oeis.org

1, 0, 2, 3, 3, 11, 10, 26, 32, 51, 90, 117, 198, 283, 417, 610, 890, 1284, 1848, 2615, 3716, 5217, 7289, 10222, 14158, 19514, 26882, 36805, 50131, 68428, 92466, 125128, 168093, 225775, 302171, 402876, 536730, 711601, 942009, 1243513, 1638395, 2152828, 2823004
Offset: 0

Views

Author

Paul D. Hanna, Nov 15 2012

Keywords

Comments

Euler transform of A061397. - Peter Luschny, Nov 21 2022

Examples

			G.f.: A(x) = 1 + 2*x^2 + 3*x^3 + 3*x^4 + 11*x^5 + 10*x^6 + 26*x^7 + 32*x^8 +...
where
log(A(x)) = 4*x^2/2 + 9*x^3/3 + 4*x^4/4 + 25*x^5/5 + 13*x^6/6 + 49*x^7/7 + 4*x^8/8 + 9*x^9/9 + 29*x^10/10 + 121*x^11/11 + 13*x^12/12 + 169*x^13/13 + 53*x^14/14 + 34*x^15/15 +...+ A005063(n)*x^n/n +...
		

Crossrefs

Programs

  • Maple
    # The function EulerTransform is defined in A358369.
    a := EulerTransform(n -> ifelse(isprime(n), n, 0)):
    seq(a(n), n = 0..42); # Peter Luschny, Nov 21 2022
  • Mathematica
    a[n_] := SeriesCoefficient[ Exp[ Sum[ DivisorSum[k, Boole[PrimeQ[#]] * #^2&] * x^k/k, {k, 1, n+1}]], {x, 0, n}]; Table[a[n], {n, 0, 42}] (* Jean-François Alcover, Jul 11 2017, from PARI *)
  • PARI
    {a(n)=polcoeff(exp(sum(k=1,n+1,sumdiv(k,d,isprime(d)*d^2)*x^k/k)+x*O(x^n)),n)}
    for(n=0,50,print1(a(n),", "))

A318969 Expansion of exp(Sum_{k>=1} ( Sum_{p|k, p prime} p^k ) * x^k/k).

Original entry on oeis.org

1, 0, 2, 9, 6, 643, 182, 118953, 6019, 242630, 2243190, 25938251679, 78106516, 23349992199606, 288964822371, 46755212195033, 226472341461312, 48661337027901364945, 18066374340919781, 104224677113940850317679, 440728415311733637734, 208546898802899685866735, 972477473959172989443327
Offset: 0

Views

Author

Ilya Gutkovskiy, Sep 06 2018

Keywords

Crossrefs

Programs

  • Mathematica
    nmax = 22; CoefficientList[Series[Exp[Sum[Sum[Boole[PrimeQ[d]] d^k, {d, Divisors[k]}] x^k/k, {k, 1, nmax}]], {x, 0, nmax}], x]
    nmax = 22; CoefficientList[Series[Product[1/(1 - Prime[k]^Prime[k] x^Prime[k])^(1/Prime[k]), {k, 1, nmax}], {x, 0, nmax}], x]
    a[n_] := a[n] = If[n == 0, 1, Sum[Sum[Boole[PrimeQ[d]] d^k, {d, Divisors[k]}] a[n - k], {k, 1, n}]/n]; Table[a[n], {n, 0, 22}]

Formula

G.f.: Product_{k>=1} 1/(1 - prime(k)^prime(k)*x^prime(k))^(1/prime(k)).
Showing 1-2 of 2 results.