cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A220479 Total number of smallest parts that are also emergent parts in all partitions of n.

Original entry on oeis.org

0, 0, 0, 1, 0, 3, 1, 5, 5, 10, 8, 22, 19, 33, 40, 62, 67, 107, 118, 175, 208, 282, 331, 462, 542, 712, 859, 1112, 1323, 1709, 2030, 2568, 3078, 3830, 4577, 5687, 6760, 8291, 9885, 12045, 14290, 17334, 20515, 24710, 29242, 35004, 41282, 49283, 57963, 68836
Offset: 1

Views

Author

Omar E. Pol, Jan 12 2013

Keywords

Comments

For the definition of emergent parts see A182699.

Crossrefs

Programs

  • Mathematica
    b[n_, i_] := b[n, i] = If[n==0 || i==1, n, {q, r} = QuotientRemainder[n, i]; If[r==0, q, 0] + Sum[b[n-i*j, i-1], {j, 0, n/i}]];
    c[n_] := b[n, n];
    d[n_] := Total[PartitionsP[Range[0, n-3]]] + PartitionsP[n-1];
    a[n_] := c[n] - d[n+1];
    Array[a, 50] (* Jean-François Alcover, Jun 05 2021, using Alois P. Heinz's code for A092269 *)

Formula

a(n) = A092269(n) - A000070(n-1) - A002865(n) = A092269(n) - A120452(n+1) = A195820(n) - A002865(n).
a(n) = A092269(n) - A000041(n) - A000070(n-2), n >= 2.
a(n) = A215513(n) - A000070(n-2), n >= 2.
a(n) ~ exp(Pi*sqrt(2*n/3)) / (8*sqrt(3)*n). - Vaclav Kotesovec, Jul 31 2017

Extensions

a(43) corrected by Vaclav Kotesovec, Jul 31 2017