cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-4 of 4 results.

A092269 Spt function: total number of smallest parts (counted with multiplicity) in all partitions of n.

Original entry on oeis.org

1, 3, 5, 10, 14, 26, 35, 57, 80, 119, 161, 238, 315, 440, 589, 801, 1048, 1407, 1820, 2399, 3087, 3998, 5092, 6545, 8263, 10486, 13165, 16562, 20630, 25773, 31897, 39546, 48692, 59960, 73423, 89937, 109553, 133439, 161840, 196168, 236843, 285816, 343667, 412950, 494702, 592063, 706671
Offset: 1

Views

Author

Vladeta Jovovic, Feb 16 2004

Keywords

Comments

Row sums of triangle A220504. - Omar E. Pol, Jan 19 2013

Examples

			Partitions of 4 are [1,1,1,1], [1,1,2], [2,2], [1,3], [4]. 1 appears 4 times in the first, 1 twice in the second, 2 twice in the third, etc.; thus a(4)=4+2+2+1+1=10.
		

Crossrefs

For higher-order spt functions see A221140-A221144.

Programs

  • Maple
    b:= proc(n, i) option remember; `if`(n=0 or i=1, n,
          `if`(irem(n, i, 'r')=0, r, 0)+add(b(n-i*j, i-1), j=0..n/i))
        end:
    a:= n-> b(n, n):
    seq(a(n), n=1..60);  # Alois P. Heinz, Jan 16 2013
  • Mathematica
    terms = 47; gf = Sum[x^n/(1 - x^n)*Product[1/(1 - x^k), {k, n, terms}], {n, 1, terms}]; CoefficientList[ Series[gf, {x, 0, terms}], x] // Rest (* Jean-François Alcover, Jan 17 2013 *)
    b[n_, i_] := b[n, i] = If[n==0 || i==1, n, {q, r} = QuotientRemainder[n, i]; If[r==0, q, 0] + Sum[b[n-i*j, i-1], {j, 0, n/i}]]; a[n_] := b[n, n]; Table[a[n], {n, 1, 60}] (* Jean-François Alcover, Nov 23 2015, after Alois P. Heinz *)
  • PARI
    N = 66;  x = 'x + O('x^N);
    gf = sum(n=1,N, x^n/(1-x^n) * prod(k=n,N, 1/(1-x^k) )  );
    v = Vec(gf)
    /* Joerg Arndt, Jan 12 2013 */

Formula

G.f.: Sum_{n>=1} x^n/(1-x^n) * Product_{k>=n} 1/(1-x^k).
a(n) = A000070(n-1) + A195820(n). - Omar E. Pol, Oct 19 2011
a(n) = n*p(n) - N_2(n)/2 = n*A000041(n) - A220908(n)/2 = A066186(n) - A220907(n) = (A220909(n) - A220908(n))/2 = A211982(n)/2 (from Andrews's paper and Garvan's paper). - Omar E. Pol, Jan 03 2013
a(n) = A000041(n) + A000070(n-2) + A220479(n), n >= 2. - Omar E. Pol, Feb 16 2013
Asymptotics (Bringmann-Mahlburg, 2009): a(n) ~ exp(Pi*sqrt(2*n/3)) / (Pi*sqrt(8*n)) ~ sqrt(6*n)*A000041(n)/Pi. - Vaclav Kotesovec, Jul 30 2017

Extensions

More terms from Pab Ter (pabrlos(AT)yahoo.com), May 25 2004

A215513 spt(n) - p(n): total number of smallest parts in all partitions of n minus the number of partitions of n.

Original entry on oeis.org

0, 1, 2, 5, 7, 15, 20, 35, 50, 77, 105, 161, 214, 305, 413, 570, 751, 1022, 1330, 1772, 2295, 2996, 3837, 4970, 6305, 8050, 10155, 12844, 16065, 20169, 25055, 31197, 38549, 47650, 58540, 71960, 87916, 107424, 130655, 158830, 192260, 232642, 280406
Offset: 1

Views

Author

Omar E. Pol, Jan 13 2013

Keywords

Comments

Also total number of smallest parts that are not on the right border in all partitions of n.

Examples

			For n = 6 the partitions of 6 with the smallest parts that are not in the right border in brackets are
-----------------------------------------
.      Partitions of 6            Value
-----------------------------------------
.                       6           0
.                  [3]+ 3           1
.                   4 + 2           0
.              [2]+[2]+ 2           2
.                   5 + 1           0
.               3 + 2 + 1           0
.               4 +[1]+ 1           1
.           2 + 2 +[1]+ 1           1
.           3 +[1]+[1]+ 1           2
.       2 +[1]+[1]+[1]+ 1           3
.  [1]+[1]+[1]+[1]+[1]+ 1           5
--------------------------------------
.                           Total: 15
On the other hand the total number of smallest parts in all partitions of 6 is 26 and the number of partitions of 6 is 11, so a(6) = 26 - 11 = 15.
		

Crossrefs

Programs

  • Mathematica
    b[n_, i_] := b[n, i] = If[n==0 || i==1, n, {q, r} = QuotientRemainder[n, i]; If[r == 0, q, 0] + Sum[b[n - i*j, i - 1], {j, 0, n/i}]];
    a[n_] := b[n, n] - PartitionsP[n];
    Array[a, 50] (* Jean-François Alcover, Jun 05 2021, using Alois P. Heinz's code for A092269 *)

Formula

a(n) = A092269(n) - A000041(n).
a(n) = A000070(n-2) + A220479(n), n >= 2.
a(n) ~ exp(Pi*sqrt(2*n/3)) / (2*Pi*sqrt(2*n)) * (1 - 25*Pi/(24*sqrt(6*n)) + (25/48 + 49*Pi^2/6912)/n). - Vaclav Kotesovec, Jul 31 2017

A220483 Total number of smallest parts that are also emergent parts in all partitions of n with at least one distinct part: a(n) = n + d(n) + p(n-1) + spt(n) - A000070(n) - sigma(n) - 1.

Original entry on oeis.org

0, 0, 0, 0, 0, 0, 1, 1, 3, 5, 8, 11, 19, 26, 34, 51, 67, 91, 118, 158, 200, 271, 331, 433, 538, 699, 849, 1089, 1323, 1674, 2030, 2542, 3066, 3813, 4567, 5640, 6760, 8272, 9871, 12002, 14290, 17287, 20515, 24675, 29214, 34981, 41282, 49216, 57957, 68798
Offset: 1

Views

Author

Omar E. Pol, Jan 16 2013

Keywords

Comments

For the definition of "emergent part" see A182699, A182709.

Crossrefs

Programs

  • Mathematica
    b[n_, i_] := b[n, i] = If[n==0 || i==1, n, {q, r} = QuotientRemainder[n, i]; If[r == 0, q, 0] + Sum[b[n - i*j, i - 1], {j, 0, n/i}]];
    a[n_] := n + DivisorSigma[0, n] + PartitionsP[n - 1] + b[n, n] -
      Total[PartitionsP[Range[0, n]]] - DivisorSigma[1, n] - 1;
    Array[a, 50] (* Jean-François Alcover, Jun 05 2021, using Alois P. Heinz's code for A092269 *)

Formula

a(n) = n + A000005(n) + A000041(n-1) + A092269(n) - A000070(n) - A000203(n) - 1.

Extensions

a(49) corrected by Jean-François Alcover, Jun 05 2021

A220489 Total number of smallest parts in all partitions of n minus the total number of smallest parts that are also emergent parts in all partitions of n with at least one distinct part.

Original entry on oeis.org

1, 3, 5, 10, 14, 26, 34, 56, 77, 114, 153, 227, 296, 414, 555, 750, 981, 1316, 1702, 2241, 2887, 3727, 4761, 6112, 7725, 9787, 12316, 15473, 19307, 24099, 29867, 37004, 45626, 56147, 68856, 84297, 102793, 125167, 151969, 184166, 222553, 268529, 323152
Offset: 1

Views

Author

Omar E. Pol, Feb 24 2013

Keywords

Comments

First differs from A092269 at a(7).
For the definition of "emergent part" see A182699, A182709.

Crossrefs

Formula

a(n) = spt(n) - A220483(n) = 1 + sigma(n) + A000070(n) - p(n-1) - d(n) - n.
a(n) = A092269(n) - A220483(n) = 1 + A000203(n) + A000070(n) - A000041(n-1) - A000005(n) - n.
Showing 1-4 of 4 results.