A220505 a(n) = spt(5n+4)/5 where spt(n) = A092269(n).
2, 16, 88, 364, 1309, 4126, 11992, 32368, 82590, 200487, 467152, 1049224, 2283364, 4829302, 9959035, 20069790, 39612612, 76703340, 145945332, 273224940, 503888206, 916373028, 1644925432, 2916814954, 5113148026, 8866911378, 15220453704
Offset: 0
Keywords
Links
- G. E. Andrews, The number of smallest parts in the partitions of n
- G. E. Andrews, F. G. Garvan, and J. Liang, Combinatorial interpretation of congruences for the spt-function
- K. C. Garrett, C. McEachern, T. Frederick, O. Hall-Holt, Fast computation of Andrews' smallest part statistic and conjectured congruences, Discrete Applied Mathematics, 159 (2011), 1377-1380.
- F. G. Garvan, Congruences for Andrews' smallest parts partition function and new congruences for Dyson's rank
- F. G. Garvan, Congruences for Andrews' spt-function modulo powers of 5, 7 and 13
- F. G. Garvan, Congruences for Andrews' spt-function modulo 32760 and extension of Atkin's Hecke-type partition congruences, arXiv:1011.1957 [math.NT], 2010.
- K. Ono, Congruences for the Andrews spt-function
Programs
-
Mathematica
b[n_, i_] := b[n, i] = If[n==0 || i==1, n, {q, r} = QuotientRemainder[n, i]; If[r == 0, q, 0] + Sum[b[n - i j, i - 1], {j, 0, n/i}]]; spt[n_] := b[n, n]; a[n_] := spt[5n+4]/5; Table[a[n], {n, 0, 26}] (* Jean-François Alcover, Jan 30 2019, after Alois P. Heinz in A092269 *)
Comments