A220511 a(n) = n^5 + 5*n + 5^n.
1, 11, 67, 383, 1669, 6275, 23431, 94967, 423433, 2012219, 9865675, 48989231, 244389517, 1221074483, 6104053519, 30518337575, 152588939281, 762940873067, 3814699155283, 19073488804319, 95367434840725, 476837162287331, 2384185796169367, 11920928961514583
Offset: 0
Examples
a(1) = 1^5 + 5*1 + 5^1 = 11. a(2) = 2^5 + 5*2 + 5^2 = 67.
Links
- Index entries for linear recurrences with constant coefficients, signature (11,-45,95,-115,81,-31,5).
Programs
-
Mathematica
Table[n^5 + 5*n + 5^n, {n, 0, 30}] (* T. D. Noe, Dec 17 2012 *) LinearRecurrence[{11,-45,95,-115,81,-31,5},{1,11,67,383,1669,6275,23431},30] (* Harvey P. Dale, Jun 03 2024 *)
-
Maxima
makelist(n^5 + 5*n + 5^n,n,0,20); /* Martin Ettl, Jan 15 2013 */
-
PARI
a(n)=n^5+5*n+5^n \\ Charles R Greathouse IV, Oct 07 2015
Formula
G.f.: (29*x^6+30*x^5+459*x^4-46*x^3+9*x^2-1) / ((x-1)^6*(5*x-1)). - Colin Barker, May 09 2013