cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A220610 Decimal expansion of sqrt(2*Pi^3).

Original entry on oeis.org

7, 8, 7, 4, 8, 0, 4, 9, 7, 2, 8, 6, 1, 2, 0, 9, 8, 7, 2, 1, 4, 5, 3, 2, 2, 9, 9, 7, 2, 3, 3, 6, 0, 2, 2, 7, 1, 1, 5, 5, 8, 4, 2, 6, 9, 1, 3, 9, 9, 3, 6, 6, 9, 2, 9, 1, 2, 8, 6, 5, 3, 8, 6, 5, 2, 0, 3, 4, 5, 5, 3, 2, 6, 6, 0, 0, 8, 2, 7, 8, 0, 8, 8, 7, 9, 7, 3
Offset: 1

Views

Author

Bruno Berselli, Dec 25 2012

Keywords

Comments

This is the case n=4 of Product_{i=1..n-1} Gamma(i/n) = sqrt((2*Pi)^(n-1)/n).
Continued fraction expansion: 7, 1, 6, 1, 79, 4, 7, 1, 1, 1, 1, 1, 1, 4, 2, 3, 73, 1, 2, 1, 14, 3, 2, 1, 1, 2, 3, 1, ...

Examples

			7.8748049728612098721453229972336022711558426913993669291...
		

Crossrefs

Cf. numbers of the form sqrt((2*Pi)^(n-1)/n) -- see the first comment: A002161 (n=2), A186706 (n=3).

Programs

  • Magma
    SetDefaultRealField(RealField(100)); R:= RealField(); Sqrt(2*Pi(R)^3); // G. C. Greubel, Sep 29 2018
  • Maple
    evalf(sqrt(2*Pi^3),120); # Muniru A Asiru, Sep 30 2018
  • Mathematica
    RealDigits[Sqrt[2 Pi^3], 10, 90][[1]]
  • Maxima
    fpprec:90; ev(bfloat(sqrt(2*%pi^3)));
    
  • PARI
    default(realprecision, 100); sqrt(2*Pi^3) \\ G. C. Greubel, Sep 29 2018
    

Formula