A220754 Number of ordered triples (a,b,c) of elements of the symmetric group S_n such that the triple a,b,c generates a transitive group.
1, 7, 194, 12858, 1647384, 361351560, 125116670160, 64439768489040, 47159227114392960, 47285264408385951360, 63057420721939066617600, 109118766834521171299756800, 239996135160204867851157273600, 659114500480471292127627441484800
Offset: 1
Keywords
Links
- P. Flajolet and R. Sedgewick, Analytic Combinatorics, 2009; page 139.
Programs
-
Mathematica
nn=14; b=Sum[n!^3 x^n/n!,{n,0,nn}]; Drop[Range[0,nn]!CoefficientList[Series[Log[b],{x,0,nn}],x],1]
-
PARI
N = 66; x = 'x + O('x^N); egf = log(sum(n=0, N, n!^2*x^n)); gf = serlaplace(egf); v = Vec(gf) /* Joerg Arndt, Apr 14 2013 */
Formula
E.g.f.: log(Sum_{n>=0} n!^2*x^n).
a(n) = (n!)^3 - (n-1)! * Sum_{k=1..n-1} a(k) * ((n-k)!)^2 / (k-1)!. - Ilya Gutkovskiy, Jul 10 2020