cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A220864 Number of perfect matchings in the graph C_4 X C_n.

Original entry on oeis.org

50, 272, 722, 3108, 10082, 39952, 140450, 537636, 1956242, 7379216, 27246962, 102144036, 379501250, 1418981392, 5285770562, 19742287908, 73621286642, 274848860432, 1025412242450, 3827417932836, 14282150107682, 53304783436816, 198924689265122, 742414961433636, 2770663499604050, 10340361362903312
Offset: 3

Views

Author

N. J. A. Sloane, Dec 27 2012

Keywords

Crossrefs

Cf. A001834.

Programs

  • Mathematica
    CoefficientList[Series[2 (25 + 36 x - 333 x^2 - 6 x^3 + 467 x^4 - 104 x^5 - 71 x^6 + 18 x^7)/((1 - x) (1 + x) (1 - 4 x + x^2) (1 - 2 x - x^2) (1 + 2 x - x^2)), {x,0, 40}], x] (* Vincenzo Librandi, Apr 20 2014 *)
  • PARI
    Vec( 2*x^3*(25+36*x-333*x^2-6*x^3+467*x^4-104*x^5-71*x^6+18*x^7)/((1-x)*(1+x)*(1-4*x+x^2)*(1-2*x-x^2)*(1+2*x-x^2)) +O(x^66) ) \\ Joerg Arndt, Oct 22 2013

Formula

G.f.: 2*x^3*(25+36*x-333*x^2-6*x^3+467*x^4-104*x^5-71*x^6+18*x^7)/((1-x)*(1+x)*(1-4*x+x^2)*(1-2*x-x^2)*(1+2*x-x^2)). - Sergey Perepechko, Oct 21 2013
Assuming the above o.g.f. we have, for n >= 1, a(2n+1) = 2*A001834(n)^2 = (2 + sqrt(3))^(2*n+1) + (2 - sqrt(3))^(2*n+1) - 2. - Peter Bala, Apr 19 2014

Extensions

More terms from Joerg Arndt, Oct 22 2013