cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A220902 a(n) = Catalan(n) - A000245(n-2).

Original entry on oeis.org

2, 4, 11, 33, 104, 339, 1133, 3861, 13364, 46852, 166022, 593674, 2139552, 7763305, 28337265, 103981965, 383351580, 1419269280, 5274495930, 19669409790, 73580417040, 276043317030, 1038327097314, 3915101867778, 14795310818024, 56028144245304, 212581753906508, 808027815817012
Offset: 2

Views

Author

N. J. A. Sloane, Jan 01 2013

Keywords

Crossrefs

Programs

  • Magma
    [Catalan(n)-Catalan(n-1)+Catalan(n-2): n in [2..30]]; // Vincenzo Librandi, Dec 24 2015
    
  • Maple
    catalan:= n -> (2*n)!/n!/(n+1)!:
    A220902:= n -> catalan(n) - catalan(n-1)+catalan(n-2):
    map(A220902, [$2..100]); # Robert Israel, Dec 31 2015
  • Mathematica
    Table[CatalanNumber[n] - CatalanNumber[n-1] + CatalanNumber[n-2], {n, 2, 30}] (* Vincenzo Librandi, Dec 24 2015 *)
    CoefficientList[ Series[-x + (1 -Sqrt[1-4x])(1 -(-1 +Sqrt[1-4x])^3/(8x) +x)/2, {x, 0, 26}], x] (* Robert G. Wilson v, Dec 24 2015 *)
  • PARI
    my(x='x+O('x^50)); Vec((1+x+x^2*((1-sqrt(1-4*x))/(2*x))^3)*x*((1-sqrt(1-4*x))/(2*x))-x) \\ Altug Alkan, Dec 24 2015
    
  • Sage
    [sum((-1)^j*catalan_number(n-j) for j in (0..2)) for n in (2..30)] # G. C. Greubel, May 03 2021

Formula

a(n) = Catalan(n) - Catalan(n-1) + Catalan(n-2). - Andrei Asinowski, Dec 16 2015
G.f.: (1 + x + x^2*C(x)^3)*x*C(x) - x where C(x) is the g.f. of A000108. - Philippe Deléham, Feb 04 2014
Conjecture: (n+1)*a(n) +(-5*n+3)*a(n-1) +(5*n-13)*a(n-2) +2*(-2*n+9)*a(n-3)=0. - R. J. Mathar, May 30 2014
From Robert Israel, Dec 31 2015: (Start)
Mathar's conjecture can be verified by expressing a in terms of factorials and simplifying.
G.f.: (1-3*x+x^2 -(1-x+x^2)*sqrt(1-4*x))/(2*x). (End)
E.g.f.: (1/6)*(-3*(3-x) + exp(2*x) * ( (9 -15*x +8*x^2)*BesselI(0, 2*x) - (6 -13*x +8*x^2)*BesselI(1, 2*x) ) ). - G. C. Greubel, May 03 2021