cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A221048 The odd semiprime numbers (A046315) which are orders of a non-Abelian group.

Original entry on oeis.org

21, 39, 55, 57, 93, 111, 129, 155, 183, 201, 203, 205, 219, 237, 253, 291, 301, 305, 309, 327, 355, 381, 417, 453, 471, 489, 497, 505, 543, 579, 597, 633, 655, 669, 687, 689, 723, 737, 755, 791, 813, 831, 849, 889, 905, 921, 939, 955, 979, 993, 1011, 1027, 1047
Offset: 1

Views

Author

David Brown, Apr 14 2013

Keywords

Comments

Numbers of the form pq where p,q are odd primes, p
The corresponding non-Abelian groups are the semidirect products of Z/qZ and Z/pZ. - Bernard Schott, May 16 2020

Crossrefs

Intersection of A046315 and A060652.

Programs

  • Mathematica
    Select[1 + 2*Range[500], (f = FactorInteger[#]; Last /@ f == {1, 1} && Mod @@ Reverse[First /@ f] == 1) &] (* Giovanni Resta, Apr 14 2013 *)
  • PARI
    lista(nn) = {forstep(n=1, nn, 2, my(f=factor(n)); if ((#f~ == 2) && (vecmax(f[,2]) == 1) && ((f[2,1] % f[1,1]) == 1), print1(n, ", ")););} \\ Michel Marcus, Sep 28 2017
    
  • PARI
    list(lim)=my(v=List()); if(lim<9, return([])); forprime(p=3,sqrtint(((lim\=1)-1)\2), forprimestep(q=2*p+1,lim,2*p, listput(v, p*q))); Set(v) \\ Charles R Greathouse IV, Feb 08 2021

Extensions

More terms from Jinyuan Wang, May 16 2020