cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A221054 Numbers whose distinct prime factors can be partitioned into two equal sums.

Original entry on oeis.org

1, 30, 60, 70, 90, 120, 140, 150, 180, 240, 270, 280, 286, 300, 350, 360, 450, 480, 490, 540, 560, 572, 600, 646, 700, 720, 750, 810, 900, 960, 980, 1080, 1120, 1144, 1200, 1292, 1350, 1400, 1440, 1500, 1620, 1750, 1798, 1800, 1920, 1960, 2145, 2160, 2240, 2250, 2288, 2310, 2400, 2430, 2450, 2584, 2700, 2730, 2800, 2880, 3000, 3135
Offset: 1

Views

Author

Keywords

Comments

This is a superset of 2*product of twin primes, A071142.

Crossrefs

Cf. A175592 (multiplicity of prime factors allowed).
Cf. A071139-A071147, especially A071140.

Programs

  • Haskell
    a221054 n = a221054_list !! (n-1)
    a221054_list = filter (z 0 0 . a027748_row) $ tail a005843_list where
       z u v []     = u == v
       z u v (p:ps) = z (u + p) v ps || z u (v + p) ps
    -- Reinhard Zumkeller, Apr 18 2013
    
  • Mathematica
    q[n_] := Module[{p = FactorInteger[n][[;; , 1]], sum, x}, sum = Total[p]; EvenQ[sum] && CoefficientList[Product[1 + x^i, {i, p}], x][[1 + sum/2]] > 0]; Select[Range[3200], q] (* Amiram Eldar, May 31 2025 *)
  • PARI
    isok(k) = my(f=factor(k), nb=#f~); for (i=0,2^nb-1, my(v=Vec(Vecrev(binary(i)), nb)); if (sum(k=1, nb, if (v[k], f[k,1])) == sum(k=1, nb, if (!v[k], f[k,1])), return(1));); \\ Michel Marcus, May 31 2025

Extensions

Missing terms inserted by Michel Marcus, May 31 2025