A221054 Numbers whose distinct prime factors can be partitioned into two equal sums.
1, 30, 60, 70, 90, 120, 140, 150, 180, 240, 270, 280, 286, 300, 350, 360, 450, 480, 490, 540, 560, 572, 600, 646, 700, 720, 750, 810, 900, 960, 980, 1080, 1120, 1144, 1200, 1292, 1350, 1400, 1440, 1500, 1620, 1750, 1798, 1800, 1920, 1960, 2145, 2160, 2240, 2250, 2288, 2310, 2400, 2430, 2450, 2584, 2700, 2730, 2800, 2880, 3000, 3135
Offset: 1
Keywords
Links
- Alois P. Heinz, Table of n, a(n) for n = 1..10000
- Christian N. K. Anderson, Table of n, a(n), and equal sums of factors for n=1..10000
Crossrefs
Programs
-
Haskell
a221054 n = a221054_list !! (n-1) a221054_list = filter (z 0 0 . a027748_row) $ tail a005843_list where z u v [] = u == v z u v (p:ps) = z (u + p) v ps || z u (v + p) ps -- Reinhard Zumkeller, Apr 18 2013
-
Mathematica
q[n_] := Module[{p = FactorInteger[n][[;; , 1]], sum, x}, sum = Total[p]; EvenQ[sum] && CoefficientList[Product[1 + x^i, {i, p}], x][[1 + sum/2]] > 0]; Select[Range[3200], q] (* Amiram Eldar, May 31 2025 *)
-
PARI
isok(k) = my(f=factor(k), nb=#f~); for (i=0,2^nb-1, my(v=Vec(Vecrev(binary(i)), nb)); if (sum(k=1, nb, if (v[k], f[k,1])) == sum(k=1, nb, if (!v[k], f[k,1])), return(1));); \\ Michel Marcus, May 31 2025
Extensions
Missing terms inserted by Michel Marcus, May 31 2025
Comments