A221364 The simple continued fraction expansion of F(x) := Product_{n >= 0} (1 - x^(4*n+3))/(1 - x^(4*n+1)) when x = 1/2*(3 - sqrt(5)).
1, 1, 1, 5, 1, 16, 1, 45, 1, 121, 1, 320, 1, 841, 1, 2205, 1, 5776, 1, 15125, 1, 39601, 1, 103680, 1, 271441, 1, 710645, 1, 1860496, 1, 4870845, 1, 12752041, 1, 33385280, 1, 87403801, 1, 228826125, 1, 599074576, 1, 1568397605, 1, 4106118241, 1, 10749957120, 1, 28143753121
Offset: 0
Examples
F(1/2*(3 - sqrt(5))) = 1.53879 34992 88095 08323 ... = 1 + 1/(1 + 1/(1 + 1/(5 + 1/(1 + 1/(16 + 1/(1 + 1/(45 + ...))))))). F((1/2*(3 - sqrt(5)))^2) = 1.16725 98258 10214 95210 ... = 1 + 1/(5 + 1/(1 + 1/(45 + 1/(1 + 1/(320 + 1/(1 + 1/(2205 + ...))))))). F((1/2*(3 - sqrt(5)))^3) = 1.05883 42773 67371 19975 ... = 1 + 1/(16 + 1/(1 + 1/(320 + 1/(1 + 1/(5776 + 1/(1 + 1/(103680 + ...))))))).
Links
- Peter Bala, Some simple continued fraction expansions for an infinite product, Part 1
- Index entries for linear recurrences with constant coefficients, signature (0,4,0,-4,0,1).
Crossrefs
Formula
a(2*n-1) = (1/2*(3 + sqrt(5)))^n + (1/2*(3 - sqrt(5)))^n - 2 = A004146(n); a(2*n) = 1.
a(n) = 4*a(n-2)-4*a(n-4)+a(n-6). G.f.: -(x^4+x^3-3*x^2+x+1) / ((x-1)*(x+1)*(x^2-x-1)*(x^2+x-1)). - Colin Barker, Jan 20 2013
Extensions
More terms from Michel Marcus, Feb 21 2025
Comments