cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A221367 The simple continued fraction expansion of F(x) := Product_{n >= 0} (1 - x^(4*n+3))/(1 - x^(4*n+1)) when x = (1/2)*(9 - sqrt(77)).

Original entry on oeis.org

1, 7, 1, 77, 1, 700, 1, 6237, 1, 55447, 1, 492800, 1, 4379767, 1, 38925117, 1, 345946300, 1, 3074591597, 1, 27325378087, 1, 242853811200, 1, 2158358922727, 1, 19182376493357, 1, 170483029517500, 1, 1515164889164157, 1, 13466000972959927, 1
Offset: 0

Views

Author

Peter Bala, Jan 15 2013

Keywords

Comments

The function F(x) := Product_{n >= 0} (1 - x^(4*n+3))/(1 - x^(4*n+1)) is analytic for |x| < 1. When x is a quadratic irrational of the form x = 1/2*(N - sqrt(N^2 - 4)), N an integer greater than 2, the real number F(x) has a predictable simple continued fraction expansion. The first examples of these expansions, for N = 2, 4, 6 and 8, are due to Hanna. See A174500 through A175503. The present sequence is the case N = 9. See also A221364 (N = 3), A221365 (N = 5) and A221366 (N = 7).
If we denote the present sequence by [1, c(1), 1, c(2), 1, c(3), ...] then for k = 1, 2, ..., the simple continued fraction expansion of F((1/2*(9 - sqrt(77)))^k) is given by the sequence [1; c(k), 1, c(2*k), 1, c(3*k), 1, ...]. Examples are given below.

Examples

			F(1/2*(9 - sqrt(77))) = 1.12519 81018 34502 81936 ... = 1 + 1/(7 + 1/(1 + 1/(77 + 1/(1 + 1/(700 + 1/(1 + 1/(6237 + ...))))))).
F((1/2*(9 - sqrt(77)))^2) = 1.01282 05391 65421 74656 ... = 1 + 1/(77 + 1/(1 + 1/(6237 + 1/(1 + 1/(492800 + 1/(1 + 1/(38925117 + ...))))))).
F((1/2*(9 - sqrt(77)))^3) = 1.00142 65335 27667 24640 ... = 1 + 1/(700 + 1/(1 + 1/(492800 + 1/(1 + 1/(345946300 + 1/(1 + 1/(242853811200 + ...))))))).
		

Crossrefs

Cf. A018193, A057081, A174500 (N = 4), A221364 (N = 3), A221365 (N = 5), A221366 (N = 7).

Formula

a(2*n-1) = (1/2*(9 + sqrt(77)))^n + (1/2*(9 - sqrt(77)))^n - 2; a(2*n) = 1.
a(4*n-1) = 77*(A018913(n))^2; a(4*n+1) = 7*(A057081(n))^2.
a(n) = 10*a(n-2)-10*a(n-4)+a(n-6). G.f.: -(x^4+7*x^3-9*x^2+7*x+1) / ((x-1)*(x+1)*(x^4-9*x^2+1)). - Colin Barker, Jan 20 2013