A221490 Number of primes of the form k*n + k - n, 1 <= k <= n.
0, 0, 1, 1, 3, 1, 2, 2, 5, 3, 6, 3, 5, 4, 4, 3, 9, 2, 6, 5, 8, 4, 9, 4, 9, 7, 10, 4, 17, 3, 10, 9, 11, 9, 15, 4, 9, 10, 13, 5, 20, 7, 11, 10, 16, 8, 19, 6, 18, 12, 17, 5, 23, 9, 18, 9, 15, 8, 26, 7, 15, 12, 16, 13, 29, 8, 18, 13, 26, 9, 25, 10, 19, 18, 16
Offset: 1
Keywords
Examples
Row 10 of A209297 = [1,12,23,34,45,56,67,78,89,100] containing three primes: [23,67,89], therefore a(10) = 3; row 11 of A209297 = [1,13,25,37,49,61,73,85,97,109,121] containing six primes: [13,37,61,73,97,109], therefore a(11) = 6. From _Wesley Ivan Hurt_, May 15 2021: (Start) [1 2 3 4 5] [1 2 3 4] [6 7 8 9 10] [1 2 3] [5 6 7 8] [11 12 13 14 15] [1 2] [4 5 6] [9 10 11 12] [16 17 18 19 20] [1] [3 4] [7 8 9] [13 14 15 16] [21 22 23 24 25] ------------------------------------------------------------------------ n 1 2 3 4 5 ------------------------------------------------------------------------ a(n) 0 0 1 1 3 ------------------------------------------------------------------------ (End)
Links
- Reinhard Zumkeller, Table of n, a(n) for n = 1..1000
Programs
-
Haskell
a221490 n = sum [a010051 (k*n + k - n) | k <- [1..n]]
-
Mathematica
Count[#,?PrimeQ]&/@Table[k*n+k-n,{n,75},{k,n}] (* _Harvey P. Dale, Apr 03 2015 *)
-
PARI
a(n) = sum(k=1, n, isprime(k*n + k - n)); \\ Michel Marcus, Jan 26 2022
Formula
a(n) = Sum_{k=1..n} c(n*(k-1)+k), where c is the prime characteristic. - Wesley Ivan Hurt, May 15 2021
Comments