A221644 Let abcd... be the decimal expansion of k. Sequence lists numbers k such that 1/a + 2/b + 3/c + 4/d + ... is an integer.
1, 11, 12, 24, 33, 111, 113, 121, 123, 139, 142, 146, 155, 184, 212, 216, 222, 226, 241, 243, 331, 333, 369, 414, 424, 482, 486, 649, 662, 666, 848, 1111, 1112, 1114, 1128, 1131, 1132, 1134, 1168, 1177, 1196, 1211, 1212, 1214, 1228, 1231, 1232, 1234, 1268
Offset: 1
Examples
184 is in the sequence because 1/1 + 2/8 + 3/4 = 2.
Links
- Michel Lagneau, Table of n, a(n) for n = 1..10000
Programs
-
Maple
with(numtheory):for n from 1 to 2000 do: d:=convert(n, base, 10):n1:=nops(d):p:=product('d[i]', 'i'=1..n1):if p<>0 then s:=sum('i/d[n1-i+1] ', 'i'=1..n1):if s=floor(s) then printf(`%d, `,n):else fi:fi:od:
-
Mathematica
Select[Range[1300],FreeQ[IntegerDigits[#],0]&&IntegerQ[Total[ Range[ IntegerLength[ #]]/ IntegerDigits[ #]]]&] (* Harvey P. Dale, May 16 2018 *)
-
PARI
isok(n) = my(d=digits(n)); vecmin(d) && (denominator(sum(k=1, #d, k/d[k])) == 1); \\ Michel Marcus, Sep 14 2017
Comments