cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A221647 Smallest number k such that prime(n) is the n-th divisor of k.

Original entry on oeis.org

3, 10, 28, 66, 234, 204, 456, 828, 1392, 2232, 2220, 5904, 7224, 5640, 9540, 14160, 14640, 28140, 25560, 26280, 79632, 89640, 64080, 69840, 181800, 129780, 134820, 183120, 189840, 213360, 495180, 460320, 934080, 1001280, 380520, 1243440, 1779960
Offset: 2

Views

Author

Michel Lagneau, May 04 2013

Keywords

Comments

The similar problem "smallest number k such that prime(n) is the n-th prime divisor of k" is given by the sequence A002110: primorial numbers product of first n primes.

Examples

			a(6) = 234 because the divisors of 234 are {1, 2, 3, 6, 9, 13, 18, 26, 39, 78, 117, 234}, and prime(6) = 13 is the 6th divisor of 234.
		

Crossrefs

Sequences giving smallest number whose n-th divisor satisfies other conditions: A087134 (prime), A119311 (prime power), A119312 (squarefree), A226101 (multiple of n-th prime), A256605 (is n+1), A383402 (largest odd divisor).

Programs

  • Maple
    A221647 := proc(n)
            local p,k,j ;
            p := ithprime(n) ;
            for j from 1 do
                    k := j*p ;
                    dvs := sort(convert(numtheory[divisors](k),list)) ;
                    if nops(dvs) >= n then
                    if op(n,dvs) = p then
                            return k ;
                    end if;
                    end if;
            end do:
    end proc:
    seq(A221647(n),n=2..30) ; # R. J. Mathar, May 05 2013
  • Mathematica
    nn = 20; t = Table[0, {nn}]; found = 1; n = 2; While[found < nn, n++; d = Divisors[n]; Do[If[i <= nn && d[[i]] == Prime[i] && t[[i]] == 0, t[[i]] = n; found++], {i, Length[d]}]]; Rest[t] (* T. D. Noe, May 07 2013 *)
  • PARI
    a(n) = my(k=2, f=factor(k), p=prime(n)); while ((numdiv(f)Michel Marcus, May 28 2025