A221647 Smallest number k such that prime(n) is the n-th divisor of k.
3, 10, 28, 66, 234, 204, 456, 828, 1392, 2232, 2220, 5904, 7224, 5640, 9540, 14160, 14640, 28140, 25560, 26280, 79632, 89640, 64080, 69840, 181800, 129780, 134820, 183120, 189840, 213360, 495180, 460320, 934080, 1001280, 380520, 1243440, 1779960
Offset: 2
Keywords
Examples
a(6) = 234 because the divisors of 234 are {1, 2, 3, 6, 9, 13, 18, 26, 39, 78, 117, 234}, and prime(6) = 13 is the 6th divisor of 234.
Links
- Donovan Johnson, Table of n, a(n) for n = 2..300
Crossrefs
Programs
-
Maple
A221647 := proc(n) local p,k,j ; p := ithprime(n) ; for j from 1 do k := j*p ; dvs := sort(convert(numtheory[divisors](k),list)) ; if nops(dvs) >= n then if op(n,dvs) = p then return k ; end if; end if; end do: end proc: seq(A221647(n),n=2..30) ; # R. J. Mathar, May 05 2013
-
Mathematica
nn = 20; t = Table[0, {nn}]; found = 1; n = 2; While[found < nn, n++; d = Divisors[n]; Do[If[i <= nn && d[[i]] == Prime[i] && t[[i]] == 0, t[[i]] = n; found++], {i, Length[d]}]]; Rest[t] (* T. D. Noe, May 07 2013 *)
-
PARI
a(n) = my(k=2, f=factor(k), p=prime(n)); while ((numdiv(f)
Michel Marcus, May 28 2025
Comments