A221869 New primes found by Rowland's recurrence in the order of their appearance.
5, 3, 11, 23, 47, 101, 7, 13, 233, 467, 941, 1889, 3779, 7559, 15131, 53, 30323, 60647, 121403, 242807, 19, 37, 17, 199, 29, 486041, 421, 972533, 577, 1945649, 163, 3891467, 127, 443, 31, 7783541, 15567089, 5323, 31139561, 41, 62279171, 83, 1103, 124559609
Offset: 1
Keywords
Examples
b(5)-b(4) = 15-10 = 5, so a(1)=5. b(6)-b(5) = 18-15 = 3, so a(2)=3. b(11)-b(10) = 33-22 =11, so a(3)=11.
Links
- Giovanni Resta, Table of n, a(n) for n = 1..3074[Terms 1 to 1000 were computed by T. D. Noe; terms 1001 to 3074 by _Giovanni Resta_, Apr 08 2016]
- Ivars Peterson, A new formula for generating primes
- Eric Rowland, A simple recurrence that produces complex behavior — and primes!
- Eric Rowland, A natural prime-generating recurrence, Journal of Integer Sequences, Vol. 11 (2008), Article 08.2.8
- Jeffrey Shallit, Recursivity: Rutgers graduate student finds new prime-generating formula
- Wikipedia, Formula for primes
Programs
-
Haskell
import Data.Set (singleton, member, insert) a221869 n = a221869_list !! (n-1) a221869_list = f 2 7 (singleton 1) where f u v s | d `member` s = f (u + 1) (v + d) s | otherwise = d : f (u + 1) (v + d) (d `insert` s) where d = gcd u v -- Reinhard Zumkeller, Nov 15 2013
-
Mathematica
t = {}; b1 = 7; Do[b0 = b1; b1 = b0 + GCD[n, b0]; d = b1 - b0; If[d > 1 && !MemberQ[t, d], AppendTo[t, d]], {n, 2, 10^6}]; t (* T. D. Noe, Apr 10 2013 *) Rest[ DeleteDuplicates[ f[1] = 7; f[n_] := f[n] = f[n - 1] + GCD[n, f[n - 1]]; Differences[ Table[ f[n], {n, 10^6}]]]] (* Jonathan Sondow, May 03 2013 *)
Formula
Entries stem from new adjacent differences b(n) = b(n - 1) + GCD(n, b(n - 1)) where b(1)=7.
Extensions
More terms from T. D. Noe, Apr 11 2013
Edited by N. J. A. Sloane, Apr 12 2013 at the suggestion of Eric Rowland.
Comments