cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A088327 G.f.: exp(Sum_{k>=1} B(x^k)/k), where B(x) = x + 2*x^2 + 5*x^3 + 14*x^4 + 42*x^5 + ... = (C(x)-1)/x and C is the g.f. for the Catalan numbers A000108.

Original entry on oeis.org

1, 1, 3, 8, 25, 77, 256, 854, 2940, 10229, 36124, 128745, 463137, 1677816, 6118165, 22432778, 82660369, 305916561, 1136621136, 4238006039, 15852603939, 59471304434, 223704813807, 843547443903, 3188064830876, 12074092672950, 45816941923597, 174173975322767
Offset: 0

Views

Author

N. J. A. Sloane, Nov 06 2003

Keywords

Comments

a(n) is the number of forests of rooted plane binary trees (each node has outdegree = 0 or 2) where the trees have a total of n internal nodes. Cf. A222006. - Geoffrey Critzer, Feb 26 2013

Crossrefs

Row sums of A275431.

Programs

  • Magma
    m:=35;
    f:= func< x | (&*[1/(1-x^j)^Catalan(j): j in [1..m+2]]) >;
    R:=PowerSeriesRing(Rationals(), m); Coefficients(R!( f(x) )); // G. C. Greubel, Dec 12 2022
  • Maple
    with(numtheory):
    a:= proc(n) option remember; `if`(n=0, 1, add(add(d*
           binomial(2*d, d)/(d+1), d=divisors(j))*a(n-j), j=1..n)/n)
        end:
    seq(a(n), n=0..40);  # Alois P. Heinz, Sep 10 2012
  • Mathematica
    With[{nn=35}, CoefficientList[Series[Product[1/(1-x^i)^CatalanNumber[i], {i,nn}], {x,0,nn}], x]] (* Geoffrey Critzer, Feb 26 2013 *)
  • SageMath
    # uses[EulerTransform from A166861]
    b = EulerTransform(lambda n: binomial(2*n, n)/(n+1))
    print([b(n) for n in range(30)]) # Peter Luschny, Nov 11 2020
    

Formula

Euler transform of Catalan numbers (A000108). - Franklin T. Adams-Watters, Mar 01 2006
a(n) ~ c * 4^n / n^(3/2), where c = exp(Sum_{k>=1} (-2 + 4^k - 4^k*sqrt(1 - 4^(1-k)))/(2*k) ) / sqrt(Pi) = 1.60022306097485382475864802335610662545... - Vaclav Kotesovec, Mar 21 2021

A342770 T(n,k) is the number of rooted plane binary forests with n nodes and k trees: triangle read by rows.

Original entry on oeis.org

1, 0, 1, 0, 0, 1, 0, 1, 0, 1, 0, 0, 1, 0, 1, 0, 2, 0, 1, 0, 1, 0, 0, 3, 0, 1, 0, 1, 0, 5, 0, 3, 0, 1, 0, 1, 0, 0, 7, 0, 3, 0, 1, 0, 1, 0, 14, 0, 8, 0, 3, 0, 1, 0, 1, 0, 0, 22, 0, 8, 0, 3, 0, 1, 0, 1, 0, 42, 0, 24, 0, 8, 0, 3, 0, 1, 0, 1, 0, 0, 66, 0, 25, 0, 8, 0
Offset: 0

Views

Author

R. J. Mathar, Mar 21 2021

Keywords

Comments

Multiset transform of A126120.

Examples

			See A222006 showing T(6,k).
The triangle starts (n>=0, 0<=k<=n):
  1
  0   1
  0   0   1
  0   1   0   1
  0   0   1   0   1
  0   2   0   1   0   1
  0   0   3   0   1   0   1
  0   5   0   3   0   1   0   1
  0   0   7   0   3   0   1   0   1
  0  14   0   8   0   3   0   1   0   1
  0   0  22   0   8   0   3   0   1   0   1
  0  42   0  24   0   8   0   3   0   1   0   1
  0   0  66   0  25   0   8   0   3   0   1   0   1
  0 132   0  74   0  25   0   8   0   3   0   1   0   1
  0   0 217   0  76   0  25   0   8   0   3   0   1   0   1
		

Crossrefs

Cf. A222006 (row sums), A126120 (column k=1), A007595 (k=2), A046342 (k=3), A088327 (limit n->oo, row reverse).
Showing 1-2 of 2 results.