A222008 Primes of the form 4^k + 1 for some k > 0.
5, 17, 257, 65537
Offset: 1
Keywords
Examples
4^1 + 1 = 5 is prime, so a(1) = 5. Also, 3^k == 3, 4, 2, 1 (mod 5) for k = 1, 2, 3, 4, resp., so 3 is a primitive root for a(1).
References
- Albert H. Beiler, Recreations in the theory of numbers, New York, Dover, (2nd ed.) 1966, p. 102, nr. 3.
- P. L. Chebyshev, Theory of congruences. Elements of number theory, Chelsea, 1972, p. 306.
Links
- P. L. Chebyshev, Theorie der Congruenzen, Mayer & Mueller, 1889, p. 306-313.
- R. Fueter, Über primitive Wurzeln von Primzahlen, Comment. Math. Helv., 18 (1946), 217-223, p. 217.
- Wikipedia, Pépin's test
- Index entries for sequences related to Artin's conjecture
- Index entries for primes by primitive root
Programs
-
Mathematica
Select[Table[4^k + 1, {k, 10^3}], PrimeQ] (* Michael De Vlieger, Dec 22 2016 *)
Formula
a(n) = A019434(n+1) for n > 0.
Comments