cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-4 of 4 results.

A090866 Primes p == 1 (mod 4) such that (p-1)/4 is prime.

Original entry on oeis.org

13, 29, 53, 149, 173, 269, 293, 317, 389, 509, 557, 653, 773, 797, 1109, 1229, 1493, 1637, 1733, 1949, 1997, 2309, 2477, 2693, 2837, 2909, 2957, 3413, 3533, 3677, 3989, 4133, 4157, 4253, 4349, 4373, 4493, 4517, 5189, 5309, 5693, 5717, 5813, 6173, 6197
Offset: 1

Views

Author

Benoit Cloitre, Feb 12 2004

Keywords

Comments

Same as Chebyshev's subsequence of the primes with primitive root 2, because Chebyshev showed that 2 is a primitive root of all primes p = 4*q+1 with q prime. If the sequence is infinite, then Artin's conjecture ("every nonsquare positive integer n is a primitive root of infinitely many primes q") is true for n = 2. - Jonathan Sondow, Feb 04 2013

References

  • Albert H. Beiler: Recreations in the theory of numbers. New York: Dover, (2nd ed.) 1966, p. 102, nr. 5.
  • P. L. Chebyshev, Theory of congruences. Elements of number theory, Chelsea, 1972, p. 306.

Crossrefs

Programs

  • Magma
    f:=[n: n in [1..2000] | IsPrime(n) and IsPrime(4*n+1)]; [4*f[n] + 1: n in [1..50]]; // G. C. Greubel, Feb 08 2019
    
  • Mathematica
    Select[Prime[Range[1000]], Mod[#, 4]==1 && PrimeQ[(#-1)/4] &] (* G. C. Greubel, Feb 08 2019 *)
  • PARI
    isok(p) = isprime(p) && !frac(q=(p-1)/4) && isprime(q); \\ Michel Marcus, Feb 09 2019

Formula

a(n) = 4*A023212(n) + 1.

A221981 Primes q = 4*p+1, where p == 2 (mod 5) is also prime.

Original entry on oeis.org

29, 149, 269, 389, 509, 1109, 1229, 1949, 2309, 2909, 3989, 4349, 5189, 5309, 6269, 6389, 7109, 7949, 8069, 9749, 10589, 10709, 11069, 11549, 12149, 12269, 13229, 13829, 14549, 15629, 16229, 17189, 17789, 18269, 19949, 20789, 22109, 22229, 24029, 24989, 25349, 25469, 25589, 26189, 26309, 28109, 28229, 28949, 29669, 30029, 30869, 31469, 32069, 33149, 34589, 34949, 36269, 36629, 36749, 37589
Offset: 1

Views

Author

Jonathan Sondow, Feb 02 2013

Keywords

Comments

Moree (2012) says that Chebyshev observed that if q = 4p + 1 is prime, with prime p == 2 (mod 5), then 10 is a primitive root modulo q.
If the sequence is infinite, then Artin's conjecture ("every nonsquare integer n != -1 is a primitive root of infinitely many primes q") is true for n = 10.
The corresponding primes p are A221982.
The sequence is infinite under Dickson's conjecture, thus Dickson's conjecture implies Artin's conjecture for n = 10. - Charles R Greathouse IV, Apr 18 2013
Two conjectures: (a) These primes have primitive root 40; (b) if a(n)*8 + 1 is prime then it has primitive root 10. - Davide Rotondo, Dec 31 2024

Examples

			29 is a member because 29 = 4*7 + 1 and 7 == 2 (mod 5) are prime.
		

References

  • P. L. Chebyshev, Theory of congruences, Elements of number theory, Chelsea, 1972, p. 306.
  • Richard K. Guy, Unsolved Problems in Number Theory, 3rd Edition, Springer, 2004, Section F9, pp. 377-380.

Crossrefs

Programs

  • Maple
    A221981:=n->`if`(isprime(4*n+1) and isprime(n) and n mod 5 = 2, 4*n+1, NULL): seq(A221981(n), n=1..10^4); # Wesley Ivan Hurt, Dec 11 2015
  • Mathematica
    Select[ Prime[ Range[4000]], Mod[(# - 1)/4, 5] == 2 && PrimeQ[(# - 1)/4] &]
  • PARI
    is(n)=n%20==9 && isprime(n) && isprime(n\4) \\ Charles R Greathouse IV, Apr 18 2013

Formula

a(n) = 4*A221982(n) + 1.
a(n) >> n log^2 n. - Charles R Greathouse IV, Dec 30 2024

A378143 a(n) is the smallest prime of the form (2*p)^(2^n) + 1 for some prime p.

Original entry on oeis.org

5, 17, 257, 65537, 808551180810136214718004658177, 9807585394417153072393128067370344132933540474708183331242417216238928121991128579833857
Offset: 0

Views

Author

Juri-Stepan Gerasimov, Nov 17 2024

Keywords

Comments

If p = 2, then a(n) is the Fermat prime.
Conjecture: the last digit of each value of a(n), where n >= 1, is 7.
The conjecture is equivalent to the claim that a(n) is not 10^(2^n) + 1 for any n, which in turn is equivalent to the claim that, if 10^(2^n) + 1 is prime, then either 4^(2^n) + 1 or 6^(2^n) + 1 is prime. - Charles R Greathouse IV, Nov 17 2024

Crossrefs

Primes p such that (2*p)^(2^k) + 1 is prime: A005384 (k = 0), A052291 (k = 1), A378146 (k = 2).

A221982 Primes p == 2 (mod 5) for which 4*p+1 is also prime.

Original entry on oeis.org

7, 37, 67, 97, 127, 277, 307, 487, 577, 727, 997, 1087, 1297, 1327, 1567, 1597, 1777, 1987, 2017, 2437, 2647, 2677, 2767, 2887, 3037, 3067, 3307, 3457, 3637, 3907, 4057, 4297, 4447, 4567, 4987, 5197, 5527, 5557, 6007, 6247, 6337, 6367, 6397, 6547, 6577, 7027, 7057, 7237, 7417, 7507, 7717, 7867
Offset: 1

Views

Author

Jonathan Sondow, Feb 02 2013

Keywords

Comments

The corresponding primes 4*p+1 are Chebyshev's subsequence A221981 of the primes with primitive root 10.

Examples

			7 is a member because 7 == 2 (mod 5) and 29 = 4*7 + 1 are both prime.
		

References

  • P. L. Chebyshev, Theory of congruences. Elements of number theory, Chelsea, 1972, p. 306.
  • R. K. Guy, Unsolved Problems in Number Theory, F9.

Crossrefs

Programs

  • Maple
    A221982:=proc(q)
    local n;
    for n from 1 to q do
    if isprime(n) and isprime(4*n+1) and (n mod 5)=2 then print(n) fi; od; end:
    A221982 (10000); # Paolo P. Lava, Feb 12 2013
  • Mathematica
    Select[ Prime[ Range[1000]], Mod[#, 5] == 2 && PrimeQ[4 # + 1] &]

Formula

a(n) = (A221981(n) - 1)/4.
Showing 1-4 of 4 results.