A222072 Decimal expansion of (1/384)*Pi^4.
2, 5, 3, 6, 6, 9, 5, 0, 7, 9, 0, 1, 0, 4, 8, 0, 1, 3, 6, 3, 6, 5, 6, 3, 3, 6, 6, 3, 7, 6, 8, 3, 6, 2, 2, 7, 2, 1, 2, 8, 3, 2, 2, 5, 4, 3, 5, 5, 9, 5, 1, 6, 1, 8, 9, 8, 8, 1, 9, 7, 5, 5, 0, 4, 9, 4, 7, 1, 5, 7, 6, 9, 4, 1, 8, 8, 2, 0, 8, 2, 3, 4, 1, 1, 7, 7, 5, 6, 9, 5, 9, 2, 3, 8, 3, 5, 9, 1, 8, 1, 0, 1
Offset: 0
Examples
.25366950790104801363656336637683622721283225435595161898819...
References
- J. H. Conway and N. J. A. Sloane, "Sphere Packings, Lattices and Groups", Springer, 3rd. ed., 1998. See p. xix.
- Steven R. Finch, Mathematical Constants, Encyclopedia of Mathematics and its Applications, vol. 94, Cambridge University Press, 2003, Section 8.7, p. 507.
Links
- J. H. Conway and N. J. A. Sloane, What are all the best sphere packings in low dimensions?, Discrete & Computational Geometry, Vol. 13, No. 3-4 (1995), 383-403.
- G. Nebe and N. J. A. Sloane, Home page for E_8 lattice.
- N. J. A. Sloane and Andrey Zabolotskiy, Table of maximal density of a packing of equal spheres in n-dimensional Euclidean space (some values are only conjectural).
- Maryna S. Viazovska, The sphere packing problem in dimension 8, Annals of Mathematics, Vol. 185, No. 3 (2017), 991-1015.
- Maryna S. Viazovska, The sphere packing problem in dimension 8, arXiv:1603.04246 [math.NT], 2017.
- Index entries for transcendental numbers.
Crossrefs
Programs
-
Mathematica
RealDigits[Pi^4/ 384,10,120][[1]] (* Harvey P. Dale, Aug 11 2015 *)
-
PARI
Pi^4/384 \\ Charles R Greathouse IV, Oct 31 2014
Formula
Equals Sum_{n>=1} Sum_{k>=n} 1/(2*n - 1)^2/(2*k + 1)^2. - Geoffrey Critzer, Nov 03 2013
Comments