A222119 Number k yielding the smallest prime of the form (k+1)^p - k^p, where p = prime(n).
1, 1, 1, 1, 5, 1, 1, 1, 5, 2, 1, 39, 6, 4, 12, 2, 2, 1, 6, 17, 46, 7, 5, 1, 25, 2, 41, 1, 12, 7, 1, 7, 327, 7, 8, 44, 26, 12, 75, 14, 51, 110, 4, 14, 49, 286, 15, 4, 39, 22, 109, 367, 22, 67, 27, 95, 80, 149, 2, 142, 3, 11, 402, 3, 44, 10, 82, 20, 95, 4, 108, 349, 127, 303, 37, 3, 162
Offset: 1
Keywords
Links
- Jinyuan Wang, Table of n, a(n) for n = 1..175
Programs
-
Maple
A222119 := proc(n) p := ithprime(n) ; for k from 1 do if isprime((k+1)^p-k^p) then return k; end if; end do: end proc: # R. J. Mathar, Feb 10 2013
-
Mathematica
Table[p = Prime[n]; k = 1; While[q = (k + 1)^p - k^p; ! PrimeQ[q], k++]; k, {n, 80}] (* T. D. Noe, Feb 12 2013 *)
-
PARI
f(p) = {my(k=1); while(ispseudoprime((k+1)^p-k^p)==0, k++); k; } lista(nn) = forprime(p=2, nn, print1(f(p), ", ")); \\ Jinyuan Wang, Feb 03 2020
Formula
a(n) = A103794(n) - 1. - Ray Chandler, Feb 26 2017
Extensions
More terms from Ray Chandler, Feb 27 2017
Comments