cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A222187 Number of toroidal n X 2 binary arrays, allowing rotation and/or reflection of the rows and/or the columns.

Original entry on oeis.org

3, 7, 13, 34, 78, 237, 687, 2299, 7685, 27190, 96909, 353384, 1296858, 4808707, 17920860, 67169299, 252745368, 954677597, 3617214681, 13744852240, 52359294790, 199915018057, 764884036743, 2932046213314, 11259024569838, 43303903226962, 166800088109829
Offset: 1

Views

Author

N. J. A. Sloane, Feb 11 2013

Keywords

Crossrefs

A column of A222188.

Programs

  • Mathematica
    b1[m_, n_] := Sum[EulerPhi[c]*EulerPhi[d]*2^(m*n/LCM[c, d]), {c, Divisors[ m]}, {d, Divisors[n]}]/(4*m*n);
    b2a[m_, n_] := If[OddQ[m], 2^((m+1)*n/2)/(4n), (2^(m*n/2) + 2^((m+2)*n/2))/(8n)];
    b2b[m_, n_] := DivisorSum[n, If[# >= 2, EulerPhi[#]*2^((m*n)/#), 0]&]/(4n);
    b2c[m_, n_] := If[OddQ[m], Sum[If[OddQ[n/GCD[j, n]], 2^((m+1)*GCD[j, n]/2) - 2^(m*GCD[j, n]), 0], {j, 1, n-1}]/(4*n), Sum[If[OddQ[n/GCD[j, n]], 2^(m*GCD[j, n]/2) + 2^((m+2)*GCD[j, n]/2) - 2^(m*GCD[j, n]+1), 0], {j, 1, n-1}]/(8n)];
    b2[m_, n_] := b2a[m, n] + b2b[m, n] + b2c[m, n];
    b3[m_, n_] := b2[n, m]; b4oo[m_, n_] := 2^((m*n - 3)/2);
    b4eo[m_, n_] := 3*2^(m*n/2 - 3); b4ee[m_, n_] := 7*2^(m*n/2 - 4);
    a[m_, n_] := Module[{b}, If[OddQ[m], If[OddQ[n], b = b4oo[m, n], b = b4eo[m, n]], If[OddQ[n], b = b4eo[m, n], b = b4ee[m, n]]]; b += b1[m, n] + b2[m, n] + b3[m, n]; Return[b]];
    a[m_] := a[m, 2];
    Array[a, 27] (* Jean-François Alcover, Sep 23 2018, after Michel Marcus in A222188 *)

Extensions

More terms from Michel Marcus, Feb 17 2013