cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A222209 Inverse of permutation in A222208.

Original entry on oeis.org

1, 3, 2, 5, 7, 4, 11, 9, 13, 17, 19, 6, 23, 29, 14, 15, 31, 8, 37, 21, 22, 41, 43, 10, 47, 53, 26, 25, 59, 28, 61, 27, 38, 67, 49, 12, 71, 73, 46, 35, 79, 33, 83, 57, 89, 97, 101, 18, 103, 51, 62, 69, 107, 16, 109, 55, 74, 113, 127, 34, 131, 137, 121, 45, 139
Offset: 1

Views

Author

Alois P. Heinz, Feb 12 2013

Keywords

Comments

Permutation of the natural numbers A000027 with inverse permutation A222208.

Crossrefs

Programs

  • Haskell
    import Data.List (elemIndex)
    import Data.Maybe (fromJust)
    a222209 = (+ 1) . fromJust . (`elemIndex` a222208_list)
    -- Reinhard Zumkeller, Feb 13 2013
  • Maple
    b:= proc(n) false end:
    g:= proc(n) option remember; local h, i;
          if n<3 then h:= 2*n-1 else g(n-1); h:= ilcm(map(g,
             numtheory[divisors](n) minus {1, n})[]) fi;
          for i while b(i*h) do od;
          b(i*h):= true; i*h
        end:
    a:= proc() local t, a; t, a:= -1, proc() -1 end;
          proc(n) local h;
            while a(n) = -1 do
              t:= t+1; h:= g(t);
              if a(h) = -1 then a(h):= t fi
            od; a(n)
          end
        end():
    seq(a(n), n=1..100);
  • Mathematica
    terms = 100; b[1] = 1; b[2] = 3; b[n_] := b[n] = Module[{d, s, c, k}, d = Divisors[n] ~Complement~ {1, n}; For[s = Sort[Array[b, n - 1]]; c = Complement[ Range[ Last[s]], s]; k = If[c == {}, Last[s] + 1, First[c]], True, k++, If[FreeQ[s, k], If[AllTrue[d, Divisible[k, b[#]] &], Return[k]]]]]; a[n_] := a[n] = For[k = 1, True, k++, If[b[k] == n, Return[k]]]; Array[a, terms] (* Jean-François Alcover, Feb 22 2018 *)