cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-4 of 4 results.

A242212 a(1) = 4. a(n) = A222209(a(n-1)).

Original entry on oeis.org

4, 5, 7, 11, 19, 37, 71, 151, 379, 1051, 3307, 11483, 44453
Offset: 1

Views

Author

J. Lowell, May 07 2014

Keywords

Comments

Question: what is the smallest composite number > 4 in this sequence?

Crossrefs

Extensions

a(13) from Alois P. Heinz, May 07 2014

A222208 a(1) = 1, a(2) = 3; for n>2, a(n) = smallest number not in {a(1), ..., a(n-1)} such that a(n) is divisible by a(d) for all divisors d of n.

Original entry on oeis.org

1, 3, 2, 6, 4, 12, 5, 18, 8, 24, 7, 36, 9, 15, 16, 54, 10, 48, 11, 72, 20, 21, 13, 108, 28, 27, 32, 30, 14, 96, 17, 162, 42, 60, 40, 144, 19, 33, 90, 216, 22, 120, 23, 84, 64, 39, 25, 324, 35, 168, 50, 270, 26, 192, 56, 180, 44, 126, 29, 288, 31, 51, 80, 486
Offset: 1

Views

Author

Alois P. Heinz, Feb 12 2013

Keywords

Comments

Permutation of the natural numbers A000027 with inverse permutation A222209.

Crossrefs

Programs

  • Haskell
    import Data.List (delete)
    a222208 n = a222208_list !! (n-1)
    a222208_list = 1 : 3 : f 3 (2 : [4 ..]) where
       f u vs = g vs where
         g (w:ws) = if all (== 0) $ map ((mod w) . a222208) $ a027751_row u
                       then w : f (u + 1) (delete w vs) else g ws
    -- Reinhard Zumkeller, Feb 13 2013
  • Maple
    b:= proc(n) false end:
    a:= proc(n) option remember; local h, i;
          if n<3 then h:= 2*n-1 else a(n-1); h:= ilcm(map(a,
             numtheory[divisors](n) minus {1, n})[]) fi;
          for i while b(i*h) do od;
          b(i*h):= true; i*h
        end:
    seq(a(n), n=1..100);
  • Mathematica
    a[1] = 1; a[2] = 3; a[n_] := a[n] = Module[{d, s, c, k}, d = Divisors[n] ~Complement~ {1, n}; For[s = Sort[Array[a, n-1]]; c = Complement[ Range[ Last[s]], s]; k = If[c == {}, Last[s]+1, First[c]], True, k++, If[FreeQ[s, k], If[AllTrue[d, Divisible[k, a[#]]&], Return[k]]]]];
    Table[a[n], {n, 1, 100}] (* Jean-François Alcover, Jan 22 2017 *)

A211384 a(1) = 1, a(2) = 3; for n>2, a(n) = smallest number > a(n-1) such that a(n) is divisible by a(d) for all divisors d of n.

Original entry on oeis.org

1, 3, 4, 6, 7, 12, 13, 18, 20, 21, 22, 24, 25, 39, 56, 72, 73, 120, 121, 126, 156, 198, 199, 216, 217, 225, 240, 312, 313, 336, 337, 360, 396, 438, 455, 480, 481, 726, 800, 882, 883, 936, 937, 990, 1120, 1194, 1195, 1296, 1300, 1302, 1460, 1800, 1801, 1920
Offset: 1

Views

Author

J. Lowell, Feb 07 2013

Keywords

Comments

Conjecture: 10 and 25 are the only composite numbers n for which a(n) = a(n-1) + 1. - J. Lowell, Oct 03 2020

Examples

			a(6) = 12 is divisible by a(1) = 1, a(2) = 3, a(3) = 4.
		

Crossrefs

Programs

  • Maple
    a:= proc(n) a(n):= `if`(n<3, 2*n-1, (h-> ceil((a(n-1)+1)/h)*h)
        (ilcm(map(a, numtheory[divisors](n) minus {1, n})[]))) end:
    seq(a(n), n=1..100);  # Alois P. Heinz, Feb 07 2013
  • Mathematica
    a[1] = 1; a[2] = 3; a[n_] := a[n] = (Ceiling[(a[n-1]+1)/#]*#&)[LCM @@ Map[a, Most[Divisors[n]]]]; Table[a[n], {n, 1, 60}] (* Jean-François Alcover, Mar 27 2017, after Alois P. Heinz *)

Extensions

More terms from Alois P. Heinz, Feb 07 2013

A242211 a(1) = 4, a(n) = A222208(a(n-1)).

Original entry on oeis.org

4, 6, 12, 36, 144, 1296, 20736, 1679616, 429981696
Offset: 1

Views

Author

J. Lowell, May 07 2014

Keywords

Comments

The definition "a(1) = 2, a(n) = A222208(a(n-1))" produces the periodic sequence 2, 3, 2, 3, 2, 3, 2, ... .
From Lechoslaw Ratajczak, May 23 2022: (Start)
It appears that a(n) = 2^(2^floor((n-1)/2))*3^(2^floor((n-2)/2)) (for n > 1). If it is true, a(10) = 2821109907456.
The definition "b(1) = 8, b(k) = A222208(b(k-1))" produces the sequence: 8, 18, 48, 324, 2304, 104976, ... . It appears that b(k) = 2^A135530(k-1)*3^A135530(k-2) (for k > 1). (End)

Examples

			a(3) = 12 because a(2) = 6 and A222208(6) = 12.
		

Crossrefs

Extensions

a(8) from Alois P. Heinz, May 07 2014
a(9) from Sean A. Irvine, Jul 18 2022
Showing 1-4 of 4 results.