A222209 Inverse of permutation in A222208.
1, 3, 2, 5, 7, 4, 11, 9, 13, 17, 19, 6, 23, 29, 14, 15, 31, 8, 37, 21, 22, 41, 43, 10, 47, 53, 26, 25, 59, 28, 61, 27, 38, 67, 49, 12, 71, 73, 46, 35, 79, 33, 83, 57, 89, 97, 101, 18, 103, 51, 62, 69, 107, 16, 109, 55, 74, 113, 127, 34, 131, 137, 121, 45, 139
Offset: 1
Links
Programs
-
Haskell
import Data.List (elemIndex) import Data.Maybe (fromJust) a222209 = (+ 1) . fromJust . (`elemIndex` a222208_list) -- Reinhard Zumkeller, Feb 13 2013
-
Maple
b:= proc(n) false end: g:= proc(n) option remember; local h, i; if n<3 then h:= 2*n-1 else g(n-1); h:= ilcm(map(g, numtheory[divisors](n) minus {1, n})[]) fi; for i while b(i*h) do od; b(i*h):= true; i*h end: a:= proc() local t, a; t, a:= -1, proc() -1 end; proc(n) local h; while a(n) = -1 do t:= t+1; h:= g(t); if a(h) = -1 then a(h):= t fi od; a(n) end end(): seq(a(n), n=1..100);
-
Mathematica
terms = 100; b[1] = 1; b[2] = 3; b[n_] := b[n] = Module[{d, s, c, k}, d = Divisors[n] ~Complement~ {1, n}; For[s = Sort[Array[b, n - 1]]; c = Complement[ Range[ Last[s]], s]; k = If[c == {}, Last[s] + 1, First[c]], True, k++, If[FreeQ[s, k], If[AllTrue[d, Divisible[k, b[#]] &], Return[k]]]]]; a[n_] := a[n] = For[k = 1, True, k++, If[b[k] == n, Return[k]]]; Array[a, terms] (* Jean-François Alcover, Feb 22 2018 *)
Comments