A222222 In the number n, replace all (decimal) digits '1' with '5' and vice versa.
0, 5, 2, 3, 4, 1, 6, 7, 8, 9, 50, 55, 52, 53, 54, 51, 56, 57, 58, 59, 20, 25, 22, 23, 24, 21, 26, 27, 28, 29, 30, 35, 32, 33, 34, 31, 36, 37, 38, 39, 40, 45, 42, 43, 44, 41, 46, 47, 48, 49, 10, 15, 12, 13, 14, 11, 16, 17, 18, 19, 60, 65, 62, 63, 64, 61, 66, 67, 68, 69, 70, 75, 72, 73, 74, 71
Offset: 0
Links
- Matthew L. LaSelle, Table of n, a(n) for n = 0..9999 (first 1000 terms from Alois P. Heinz)
Programs
-
Haskell
a222222 = foldl f 0 . map (read . return) . show :: Integer -> Integer where f v d = 10 * v + if d == 1 || d == 5 then 6 - d else d -- Reinhard Zumkeller, Jan 29 2014
-
Maple
a:= proc(n) local m, d; d:=irem(n, 10, 'm'); `if`(n=0, 0, parse(cat(a(m),`if`(d in [1, 5], 6-d, d)))) end: seq(a(n), n=0..99); # Alois P. Heinz, Mar 02 2013
-
Mathematica
a[n_]:= IntegerDigits[n]/.{1->5, 5->1} // FromDigits; Table[a[n], {n, 0, 80}] (* Vincenzo Librandi, Jul 30 2013 *)
-
PARI
A222222(n,d=[0,5,2,3,4,1,6,7,8,9])=sum(i=1, #n=digits(n), d[n[i]+1]*10^(#n-i)) \\ gives correct value for n=0 iff d[1]=0, since digits(0)=[] in PARI (v.2.6)
Formula
Recurrence: a(10*n+i) = 10*a(n)+g(i) for 0 <= i <= 9, where
g(x) = -13/10080*x^9 +43/840*x^8 -611/720*x^7 +457/60*x^6 -57739/1440*x^5 +5007/40*x^4 -62231/280*x^3 +13941/70*x^2 -319/5*x. - Robert Israel, May 13 2014
Comments