A222467 Denominator sequence of the n-th convergent of the continued fraction 1/(1 + 2/(2 + 2/(3 + 2/(4 + ...
1, 1, 4, 14, 64, 348, 2216, 16208, 134096, 1239280, 12660992, 141749472, 1726315648, 22725602368, 321611064448, 4869617171456, 78557096872192, 1345209881170176, 24370892054807552, 465737368803683840, 9363489160183291904
Offset: 0
Examples
a(4) = 4*a(3) + 2*a(2) = 4*14 + 2*4 = 64. Continued fraction convergent: 1/(1+2/(2+2/(3+2/4))) = 9/16 = 36/64 = A222468(4)/a(4). Morse code a(4) = 64 from the sum of all 5 labeled codes on [1,2,3,4], one with no dash, three with one dash and one with two dashes: 4! + (3*4 + 1*4 + 1*2)*2 + 2^2 = 64.
Links
- Harvey P. Dale, Table of n, a(n) for n = 0..449
Programs
-
Magma
I:=[1,4]; [1] cat [n le 2 select I[n] else n*Self(n -1) + 2*Self(n-2): n in [1..30]]; // G. C. Greubel, May 16 2018
-
Mathematica
RecurrenceTable[{a[0]==a[1]==1,a[n]==n*a[n-1]+2*a[n-2]},a,{n,20}] (* Harvey P. Dale, Jul 06 2017 *)
-
PARI
m=30; v=concat([1,4], vector(m-2)); for(n=3, m, v[n]=n*v[n-1] + 2*v[n-2]); concat([1], v) \\ G. C. Greubel, May 16 2018
Formula
Recurrence: a(n) = n*a(n-1) + 2*a(n-2), a(-1) = 0, a(0 ) =1, n >= 1.
As a sum: a(n) = Sum_{m =0..floor(n/2)} a(n-m,m)*2^m, n >= 0, with a(n,m) = (n!/m!)*binomial(n,m) = |A021009(n,m)| (Laguerre).
Explicit form: a(n) = 2*(w/2)^(n+1)*(BesselI(0,w)*BesselK(n+1,w) - BesselK(0,w)*BesselI(n+1,w)*(-1)^(n+1)) with w := -2*sqrt(2).
E.g.f.: (i*Pi*sqrt(2)/sqrt(1-z))*(BesselJ(1, 2*i*sqrt(2)*sqrt(1-z))*BesselY(0, 2*i*sqrt(2)) - BesselY(1, 2*i*sqrt(2)*sqrt(1-z))*BesselJ(0,2*i*sqrt(2))) with the imaginary unit i = sqrt(-1).
Asymptotics: lim_{n->infinity} a(n)/n! = BesselI(0,2*sqrt(2)) = 4.2523508795026...
Comments