cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A222657 a(n) = 2 * floor( (2*n + 1) / 3) + 1.

Original entry on oeis.org

1, 3, 3, 5, 7, 7, 9, 11, 11, 13, 15, 15, 17, 19, 19, 21, 23, 23, 25, 27, 27, 29, 31, 31, 33, 35, 35, 37, 39, 39, 41, 43, 43, 45, 47, 47, 49, 51, 51, 53, 55, 55, 57, 59, 59, 61, 63, 63, 65, 67, 67, 69, 71, 71, 73, 75, 75, 77, 79, 79, 81, 83, 83, 85, 87, 87, 89
Offset: 0

Views

Author

Michael Somos, May 29 2013

Keywords

Comments

Dimension of the space of weight 2n+4 cusp forms for Gamma_0(7).

Examples

			G.f. = 1 + 3*x + 3*x^2 + 5*x^3 + 7*x^4 + 7*x^5 + 9*x^6 + 11*x^7 + 11*x^8 + ...
		

Crossrefs

Programs

  • Mathematica
    Table[2Floor[(2n+1)/3]+1,{n,0,70}] (* or *) LinearRecurrence[{1,0,1,-1},{1,3,3,5},70] (* Harvey P. Dale, Sep 17 2024 *)
  • PARI
    {a(n) = (2*n + 1) \ 3 * 2 + 1};
    
  • Sage
    def a(n) : return( len( CuspForms( Gamma0( 7), 2*n + 4, prec=1). basis()));

Formula

G.f.: (1 + 2*x + x^3) / (1 - x - x^3 + x^4).
a(-n) = - A168056(n - 1).
a(n) = - A168053(n + 2).
a(n+3) = a(n) + 4.
a(n) = (12*n+9+4*sqrt(3)*sin(2*n*Pi/3))/9. - Wesley Ivan Hurt, Sep 29 2017