cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A222715 The number of binary pattern classes in the (2,n)-rectangular grid with 5 '1's and (2n-5) '0's: two patterns are in same class if one of them can be obtained by a reflection or 180-degree rotation of the other.

Original entry on oeis.org

2, 14, 66, 198, 508, 1092, 2156, 3876, 6606, 10626, 16478, 24570, 35672, 50344, 69624, 94248, 125562, 164502, 212762, 271502, 342804, 428076, 529828, 649740, 790790, 954954, 1145718, 1365378, 1617968, 1906128, 2234480, 2606032, 3026034, 3497886, 4027506
Offset: 3

Views

Author

Yosu Yurramendi, May 29 2013

Keywords

Crossrefs

Cf. A226048.

Programs

  • Magma
    m:=30; R:=PowerSeriesRing(Integers(), m); Coefficients(R!(2*x^3*(1+4*x+12*x^2+8*x^3+7*x^4)/((1+x)^3*(1-x)^6)));
    
  • Magma
    [(1/4)*(Binomial(2*n,5) + 2*Binomial(n-1,2)*(1/2)*(1-(-1)^n)): n in [3..40]]; // Vincenzo Librandi, Sep 04 2013
  • Mathematica
    Table[(n - 2) (n - 1) ((8 n^3 - 16 n^2 + 6 n - 15 (-1)^n + 15)/120), {n, 3, 40}] (* Bruno Berselli, May 30 2013 *)
    LinearRecurrence[{3, 0, -8, 6, 6, -8, 0, 3, -1}, {2, 14, 66, 198, 508, 1092, 2156, 3876, 6606}, 50] (* T. D. Noe, Jun 14 2013 *)
    CoefficientList[Series[2 (1 + 4 x + 12 x^2 + 8 x^3 + 7 x^4) / ((1 + x)^3 (1 - x)^6), {x, 0, 40}], x] (* Vincenzo Librandi, Sep 04 2013 *)
  • R
    a <- vector()
        for(n in 1:40) a[n] <- (1/4)*(choose(2*(n+2),5) + 2*choose(n+1,2)*(1/2)*(1-(-1)^n))
        a  [Yosu Yurramendi and María Merino, Aug 21 2013]
    

Formula

a(n) = 6*a(n-1)-15*a(n-2)+20*a(n-3)-15*a(n-4)+6*a(n-5)-a(n-6) -4*(2*n^2-22*n+63)*(-1)^n, with n>8, a(3)=2, a(4)=14, a(5)=66, a(6)=198, a(7)=508, a(8)=1092.
From Bruno Berselli, May 29 2013: (Start)
G.f.: 2*x^3*(1+4*x+12*x^2+8*x^3+7*x^4)/((1+x)^3*(1-x)^6).
a(n) = 3*a(n-1) -8*a(n-3) +6*a(n-4) +6*a(n-5) -8*a(n-6) +3*a(n-8) -a(n-9), with n>11.
a(n) = (n-2)*(n-1)*(8*n^3-16*n^2+6*n-15*(-1)^n+15)/120. (End)
a(n) = (1/4)*(binomial(2*n,5) + 2*binomial(n-1,2)*(1/2)*(1-(-1)^n)). [Yosu Yurramendi and María Merino, Aug 21 2013]