cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 11 results. Next

A103628 Total sum of parts of multiplicity 1 in all partitions of n.

Original entry on oeis.org

0, 1, 2, 6, 10, 21, 33, 59, 89, 145, 212, 325, 463, 680, 948, 1348, 1845, 2558, 3446, 4681, 6219, 8306, 10901, 14352, 18632, 24230, 31151, 40077, 51074, 65088, 82290, 103986, 130517, 163679, 204078, 254174, 314975, 389839, 480369, 591133, 724600, 886965
Offset: 0

Views

Author

Vladeta Jovovic, Mar 25 2005

Keywords

Comments

Total number of parts of multiplicity 1 in all partitions of n is A024786(n+1).
Equals A000041 convolved with A026741. - Gary W. Adamson, Jun 11 2009

Examples

			Partitions of 4 are [1,1,1,1], [1,1,2], [2,2], [1,3], [4] and a(4) = 0 + 2 + 0 + (1+3) + 4 = 10.
		

Crossrefs

Cf. A026741. - Gary W. Adamson, Jun 11 2009
Column k=1 of A222730. - Alois P. Heinz, Mar 03 2013

Programs

  • Maple
    gf:=x*(1+x+x^2)/(1-x^2)^2/product((1-x^k), k=1..500): s:=series(gf, x, 100): for n from 0 to 60 do printf(`%d,`,coeff(s, x, n)) od: # James Sellers, Apr 22 2005
    # second Maple program:
    b:= proc(n, i) option remember; `if`(n=0, [1, 0],
          `if`(i<1, [0, 0], add((l->`if`(j=1, [l[1],
           l[2]+l[1]*i], l))(b(n-i*j, i-1)), j=0..n/i)))
        end:
    a:= n-> b(n, n)[2]:
    seq(a(n), n=0..50);  # Alois P. Heinz, Feb 03 2013
  • Mathematica
    b[n_, p_] := b[n, p] = If[n == 0 && p == 0, {1, 0}, If[p == 0, Array[0&, n+2], Sum[Function[l, ReplacePart[l, m+2 -> p*l[[1]] + l[[m+2]]]][Join[b[n-p*m, p-1], Array[0&, p*m]]], {m, 0, n/p}]]]; a[n_] := b[n, n][[3]]; a[0] = 0; Table[a[n], {n, 0, 50}]  (* Jean-François Alcover, Jan 24 2014, after Alois P. Heinz *)

Formula

G.f.: x*(1+x+x^2)/(1-x^2)^2 /Product_{k>0}(1-x^k).
a(n) = A066186(n) - A194544(n). - Omar E. Pol, Nov 20 2011
a(n) = 3*A014153(n)/4 - 3*A000070(n)/4 - A270143(n+1)/4 + A087787(n)/4. - Vaclav Kotesovec, Nov 05 2016
a(n) ~ 3^(3/2) * exp(Pi*sqrt(2*n/3)) / (8*Pi^2) * (1 - Pi/(24*sqrt(6*n))). - Vaclav Kotesovec, Nov 05 2016

Extensions

More terms from James Sellers, Apr 22 2005

A117525 Total sum of parts of multiplicity 2 in all partitions of n.

Original entry on oeis.org

0, 0, 1, 0, 3, 3, 7, 9, 20, 22, 44, 56, 90, 119, 186, 236, 355, 461, 651, 848, 1177, 1506, 2050, 2626, 3482, 4443, 5823, 7353, 9524, 11983, 15307, 19163, 24277, 30174, 37920, 46925, 58463, 72006, 89155, 109209, 134418, 163973, 200605, 243700, 296696, 358862
Offset: 0

Views

Author

Vladeta Jovovic, Apr 26 2006

Keywords

Comments

For m > 0, column m of A222730 is asymptotic to sqrt(3) * (2*m+1) * exp(Pi*sqrt(2*n/3)) / (2 * m^2 * (m+1)^2 * Pi^2) ~ 6 * (2*m+1) * n * p(n) / (m^2 * (m+1)^2 * Pi^2), where p(n) is the partition function A000041(n). - Vaclav Kotesovec, May 29 2018

Examples

			a(5) = 3 because the partitions of 5 that have parts with multiplicity 2 are [3,1,1] and [2,2,1] and the sum of those parts is 1+2 = 3.
		

Crossrefs

Cf. A103628.
Column k=2 of A222730. - Alois P. Heinz, Mar 03 2013

Programs

  • Maple
    g:=(x^2/(1-x^2)^2-x^3/(1-x^3)^2)/Product(1-x^i,i=1..60): gser:=series(g,x=0,55): seq(coeff(gser,x,n),n=0..50); # Emeric Deutsch, May 13 2006
    # second Maple program:
    b:= proc(n, i) option remember; `if`(n=0, [1, 0], `if`(i<1, [0, 0],
          add((l->`if`(j=2, [l[1], l[2]+l[1]*i], l))(b(n-i*j, i-1)), j=0..n/i)))
        end:
    a:= n-> b(n, n)[2]:
    seq(a(n), n=0..50);  # Alois P. Heinz, Feb 03 2013
  • Mathematica
    b[n_, p_] := b[n, p] = If[n == 0 && p == 0, {1, 0}, If[p == 0, Array[0&, n+2], Sum[Function[l, ReplacePart[l, m+2 -> p*l[[1]] + l[[m+2]]]][Join[b[n-p*m, p-1], Array[0&, p*m]]], {m, 0, n/p}]]]; a[n_] := b[n, n][[4]]; a[0] = a[1] = 0; Table[a[n], {n, 0, 50}]   (* Jean-François Alcover, Jan 24 2014, after Alois P. Heinz *)

Formula

G.f. for total sum of parts of multiplicity m in all partitions of n is (x^m/(1-x^m)^2-x^(m+1)/(1-x^(m+1))^2)/Product(1-x^i,i=1..infinity).
a(n) ~ 5 * sqrt(3) * exp(Pi*sqrt(2*n/3)) / (72 * Pi^2). - Vaclav Kotesovec, May 29 2018

Extensions

More terms from Emeric Deutsch, May 13 2006

A213679 Total sum of parts <= n of multiplicity 0 in all partitions of n.

Original entry on oeis.org

0, 0, 3, 11, 36, 79, 186, 345, 672, 1163, 2026, 3273, 5388, 8301, 12912, 19349, 28961, 42071, 61253, 86921, 123404, 171972, 239020, 327386, 447743, 604255, 813645, 1084657, 1441643, 1899450, 2496510, 3255653, 4234822, 5472953, 7053217, 9038784, 11554020
Offset: 0

Views

Author

Alois P. Heinz, Mar 04 2013

Keywords

Examples

			The partitions of n=4 are [1,1,1,1], [2,1,1], [2,2], [3,1], [4].  Parts <= 4 with multiplicity m=0 sum up to (2+3+4)+(3+4)+(1+3+4)+(2+4)+(1+2+3) = 36, thus a(4) = 36.
		

Crossrefs

Column k=0 of A222730.

Programs

  • Maple
    b:= proc(n, p) option remember; `if`(n=0 and p=0, [1, 0], `if`(p<1, [0$2],
          add((l->`if`(m=0, l+[0, l[1]*p], l))(b(n-p*m, p-1)), m=0..n/p)))
        end:
    a:= n-> b(n, n)[2]:
    seq(a(n), n=0..55);
  • Mathematica
    b[n_, p_] := b[n, p] = If[n == 0 && p == 0, {1, 0}, If[p == 0, Array[0&, n+2], Sum[Function[l, ReplacePart[l, m+2 -> p*l[[1]] + l[[m+2]]]][Join[b[n-p*m, p-1], Array[0&, p*m]]], {m, 0, n/p}]]]; a[n_] := b[n, n][[2]]; Table[a[n], {n, 0, 55}] (* Jean-François Alcover, Jan 24 2014, after Alois P. Heinz *)

Formula

a(n) = A000217(n)*A000041(n)-A014153(n-1).

A222731 Total sum of parts of multiplicity 3 in all partitions of n.

Original entry on oeis.org

1, 0, 1, 3, 4, 4, 11, 13, 21, 30, 44, 59, 92, 115, 165, 225, 305, 394, 546, 700, 931, 1204, 1572, 2005, 2613, 3290, 4218, 5328, 6745, 8423, 10630, 13193, 16475, 20386, 25269, 31072, 38346, 46882, 57478, 70066, 85415, 103582, 125794, 151916, 183576, 220962
Offset: 3

Views

Author

Alois P. Heinz, Mar 03 2013

Keywords

Crossrefs

Column k=3 of A222730.

Programs

  • Maple
    b:= proc(n, p) option remember; `if`(n=0, [1, 0], `if`(p<1, [0, 0],
          add((l->`if`(m=3, l+[0, l[1]*p], l))(b(n-p*m, p-1)), m=0..n/p)))
        end:
    a:= n-> b(n, n)[2]:
    seq(a(n), n=3..50);
  • Mathematica
    b[n_, p_] := b[n, p] = If[n == 0 && p == 0, {1, 0}, If[p == 0, Array[0&, n+2], Sum[Function[l, ReplacePart[l, m+2 -> p*l[[1]] + l[[m+2]]]][Join[b[n-p*m, p-1], Array[0&, p*m]]], {m, 0, n/p}]]]; a[n_] := b[n, n][[5]]; Table[a[n], {n, 3, 50}] (* Jean-François Alcover, Jan 24 2014, after Alois P. Heinz *)

Formula

G.f.: (x^3/(1-x^3)^2-x^4/(1-x^4)^2)/Product_{i>=1}(1-x^i).
a(n) ~ 7 * sqrt(3) * exp(Pi*sqrt(2*n/3)) / (288 * Pi^2). - Vaclav Kotesovec, May 29 2018

A222732 Total sum of parts of multiplicity 4 in all partitions of n.

Original entry on oeis.org

1, 0, 1, 1, 4, 4, 6, 8, 16, 19, 30, 36, 59, 73, 106, 135, 191, 242, 331, 420, 569, 712, 941, 1183, 1546, 1931, 2476, 3087, 3933, 4872, 6137, 7568, 9471, 11629, 14427, 17647, 21758, 26499, 32470, 39393, 48030, 58028, 70385, 84749, 102348, 122794, 147633, 176554
Offset: 4

Views

Author

Alois P. Heinz, Mar 03 2013

Keywords

Crossrefs

Column k=4 of A222730.

Programs

  • Maple
    b:= proc(n, p) option remember; `if`(n=0, [1, 0], `if`(p<1, [0, 0],
          add((l->`if`(m=4, l+[0, l[1]*p], l))(b(n-p*m, p-1)), m=0..n/p)))
        end:
    a:= n-> b(n, n)[2]:
    seq(a(n), n=4..55);
  • Mathematica
    b[n_, p_] := b[n, p] = If[n == 0 && p == 0, {1, 0}, If[p == 0, Array[0&, n+2], Sum[Function[l, ReplacePart[l, m+2 -> p*l[[1]] + l[[m+2]]]][Join[b[n-p*m, p-1], Array[0&, p*m]]], {m, 0, n/p}]]]; a[n_] := b[n, n][[6]]; Table[a[n], {n, 4, 55}] (* Jean-François Alcover, Jan 24 2014, after Alois P. Heinz *)

Formula

G.f.: (x^4/(1-x^4)^2-x^5/(1-x^5)^2)/Product_{i>=1}(1-x^i).
a(n) ~ 9 * sqrt(3) * exp(Pi*sqrt(2*n/3)) / (800 * Pi^2). - Vaclav Kotesovec, May 29 2018

A222733 Total sum of parts of multiplicity 5 in all partitions of n.

Original entry on oeis.org

1, 0, 1, 1, 2, 4, 6, 6, 11, 14, 23, 29, 43, 52, 76, 100, 135, 174, 235, 294, 397, 500, 651, 821, 1060, 1324, 1692, 2107, 2658, 3297, 4139, 5089, 6339, 7778, 9604, 11746, 14425, 17533, 21427, 25960, 31548, 38080, 46070, 55375, 66718, 79957, 95906, 114555
Offset: 5

Views

Author

Alois P. Heinz, Mar 03 2013

Keywords

Crossrefs

Column k=5 of A222730.

Programs

  • Maple
    b:= proc(n, p) option remember; `if`(n=0, [1, 0], `if`(p<1, [0, 0],
          add((l->`if`(m=5, l+[0, l[1]*p], l))(b(n-p*m, p-1)), m=0..n/p)))
        end:
    a:= n-> b(n, n)[2]:
    seq(a(n), n=5..55);
  • Mathematica
    b[n_, p_] := b[n, p] = If[n == 0 && p == 0, {1, 0}, If[p == 0, Array[0&, n+2], Sum[Function[l, ReplacePart[l, m+2 -> p*l[[1]] + l[[m+2]]]][Join[b[n-p*m, p-1], Array[0&, p*m]]], {m, 0, n/p}]]]; a[n_] := b[n, n][[7]]; Table[a[n], {n, 5, 55}] (* Jean-François Alcover, Jan 24 2014, after Alois P. Heinz *)

Formula

G.f.: (x^5/(1-x^5)^2-x^6/(1-x^6)^2)/Product_{i>=1}(1-x^i).
a(n) ~ 11 * sqrt(3) * exp(Pi*sqrt(2*n/3)) / (1800 * Pi^2). - Vaclav Kotesovec, May 29 2018

A222734 Total sum of parts of multiplicity 6 in all partitions of n.

Original entry on oeis.org

1, 0, 1, 1, 2, 2, 6, 6, 9, 12, 18, 22, 36, 43, 62, 77, 107, 133, 186, 229, 306, 384, 499, 621, 810, 999, 1277, 1582, 1997, 2453, 3088, 3776, 4698, 5742, 7088, 8618, 10592, 12824, 15654, 18910, 22955, 27615, 33400, 40028, 48174, 57593, 69018, 82231, 98225
Offset: 6

Views

Author

Alois P. Heinz, Mar 03 2013

Keywords

Crossrefs

Column k=6 of A222730.

Programs

  • Maple
    b:= proc(n, p) option remember; `if`(n=0, [1, 0], `if`(p<1, [0, 0],
          add((l->`if`(m=6, l+[0, l[1]*p], l))(b(n-p*m, p-1)), m=0..n/p)))
        end:
    a:= n-> b(n, n)[2]:
    seq(a(n), n=6..55);
  • Mathematica
    b[n_, p_] := b[n, p] = If[n == 0 && p == 0, {1, 0}, If[p == 0, Array[0&, n+2], Sum[Function[l, ReplacePart[l, m+2 -> p*l[[1]] + l[[m+2]]]][Join[b[n-p*m, p-1], Array[0&, p*m]]], {m, 0, n/p}]]]; a[n_] := b[n, n][[8]]; Table[a[n], {n, 6, 55}] (* Jean-François Alcover, Jan 24 2014, after Alois P. Heinz *)

Formula

G.f.: (x^6/(1-x^6)^2-x^7/(1-x^7)^2)/Product_{i>=1}(1-x^i).
a(n) ~ 13 * sqrt(3) * exp(Pi*sqrt(2*n/3)) / (3528 * Pi^2). - Vaclav Kotesovec, May 29 2018

A222735 Total sum of parts of multiplicity 7 in all partitions of n.

Original entry on oeis.org

1, 0, 1, 1, 2, 2, 4, 6, 9, 10, 16, 20, 29, 36, 53, 66, 91, 112, 152, 190, 251, 315, 409, 510, 655, 809, 1029, 1271, 1602, 1967, 2457, 3009, 3729, 4543, 5595, 6801, 8321, 10069, 12258, 14783, 17906, 21511, 25947, 31073, 37315, 44542, 53285, 63415, 75587, 89687
Offset: 7

Views

Author

Alois P. Heinz, Mar 03 2013

Keywords

Crossrefs

Column k=7 of A222730.

Programs

  • Maple
    b:= proc(n, p) option remember; `if`(n=0, [1, 0], `if`(p<1, [0, 0],
          add((l->`if`(m=7, l+[0, l[1]*p], l))(b(n-p*m, p-1)), m=0..n/p)))
        end:
    a:= n-> b(n, n)[2]:
    seq(a(n), n=7..60);
  • Mathematica
    b[n_, p_] := b[n, p] = If[n == 0 && p == 0, {1, 0}, If[p == 0, Array[0&, n+2], Sum[Function[l, ReplacePart[l, m+2 -> p*l[[1]] + l[[m+2]]]][Join[b[n-p*m, p-1], Array[0&, p*m]]], {m, 0, n/p}]]]; a[n_] := b[n, n][[9]]; Table[a[n], {n, 7, 60}] (* Jean-François Alcover, Jan 24 2014, after Alois P. Heinz *)

Formula

G.f.: (x^7/(1-x^7)^2-x^8/(1-x^8)^2)/Product_{i>=1}(1-x^i).
a(n) ~ 15 * sqrt(3) * exp(Pi*sqrt(2*n/3)) / (6272 * Pi^2). - Vaclav Kotesovec, May 29 2018

A222736 Total sum of parts of multiplicity 8 in all partitions of n.

Original entry on oeis.org

1, 0, 1, 1, 2, 2, 4, 4, 9, 10, 14, 18, 27, 32, 46, 57, 80, 99, 134, 163, 219, 270, 350, 433, 561, 686, 875, 1074, 1349, 1652, 2062, 2509, 3116, 3783, 4650, 5633, 6893, 8305, 10108, 12153, 14709, 17630, 21243, 25371, 30452, 36271, 43335, 51478, 61311, 72598
Offset: 8

Views

Author

Alois P. Heinz, Mar 03 2013

Keywords

Crossrefs

Column k=8 of A222730.

Programs

  • Maple
    b:= proc(n, p) option remember; `if`(n=0, [1, 0], `if`(p<1, [0, 0],
          add((l->`if`(m=8, l+[0, l[1]*p], l))(b(n-p*m, p-1)), m=0..n/p)))
        end:
    a:= n-> b(n, n)[2]:
    seq(a(n), n=8..60);
  • Mathematica
    b[n_, p_] := b[n, p] = If[n == 0 && p == 0, {1, 0}, If[p == 0, Array[0&, n+2], Sum[Function[l, ReplacePart[l, m+2 -> p*l[[1]] + l[[m+2]]]][Join[b[n-p*m, p-1], Array[0&, p*m]]], {m, 0, n/p}]]]; a[n_] := b[n, n][[10]]; Table[a[n], {n, 8, 60}] (* Jean-François Alcover, Jan 24 2014, after Alois P. Heinz *)

Formula

G.f.: (x^8/(1-x^8)^2-x^9/(1-x^9)^2)/Product_{i>=1}(1-x^i).
a(n) ~ 17 * sqrt(3) * exp(Pi*sqrt(2*n/3)) / (10368 * Pi^2). - Vaclav Kotesovec, May 29 2018

A222737 Total sum of parts of multiplicity 9 in all partitions of n.

Original entry on oeis.org

1, 0, 1, 1, 2, 2, 4, 4, 7, 10, 14, 16, 25, 30, 42, 53, 71, 88, 121, 148, 195, 241, 312, 384, 494, 605, 765, 943, 1179, 1441, 1796, 2181, 2694, 3273, 4011, 4849, 5922, 7130, 8652, 10398, 12552, 15021, 18072, 21558, 25816, 30729, 36649, 43480, 51705, 61163
Offset: 9

Views

Author

Alois P. Heinz, Mar 03 2013

Keywords

Crossrefs

Column k=9 of A222730.

Programs

  • Maple
    b:= proc(n, p) option remember; `if`(n=0, [1, 0], `if`(p<1, [0, 0],
          add((l->`if`(m=9, l+[0, l[1]*p], l))(b(n-p*m, p-1)), m=0..n/p)))
        end:
    a:= n-> b(n, n)[2]:
    seq(a(n), n=9..60);
  • Mathematica
    b[n_, p_] := b[n, p] = If[n == 0 && p == 0, {1, 0}, If[p == 0, Array[0&, n+2], Sum[Function[l, ReplacePart[l, m+2 -> p*l[[1]] + l[[m+2]]]][Join[b[n-p*m, p-1], Array[0&, p*m]]], {m, 0, n/p}]]]; a[n_] := b[n, n][[11]]; Table[a[n], {n, 9, 60}] (* Jean-François Alcover, Jan 24 2014, after Alois P. Heinz *)

Formula

G.f.: (x^9/(1-x^9)^2-x^10/(1-x^10)^2)/Product_{i>=1}(1-x^i).
a(n) ~ 19 * sqrt(3) * exp(Pi*sqrt(2*n/3)) / (16200 * Pi^2). - Vaclav Kotesovec, May 29 2018
Showing 1-10 of 11 results. Next