cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A222740 Denominators of 1/16 - 1/(4 + 8*n)^2.

Original entry on oeis.org

1, 18, 50, 49, 81, 242, 338, 225, 289, 722, 882, 529, 625, 1458, 1682, 961, 1089, 2450, 2738, 1521, 1681, 3698, 4050, 2209, 2401, 5202, 5618, 3025, 3249, 6962, 7442, 3969, 4225, 8978, 9522, 5041, 5329, 11250, 11858, 6241
Offset: 0

Views

Author

Paul Curtz, May 29 2013

Keywords

Comments

Denominators of the reduced fractions A064038(n)/a(n) = 0/1, 1/18, 3/50, 3/49, 5/81, 15/242, 21/338, 14/225, 18/289, ... .
Also, A064038 and a(n) are related to the sequence of period 4: repeat 1, 2, 2, 1.

Examples

			a(0) = 1*1, a(1) = 2*9 = 18, a(2) = 2*25 = 50, a(3) = 1*49 = 49.
a(0) = 16*0 + 1 = 1, a(1) = 16*1 + 2 = 18, a(2) = 16*3 + 2 = 50, a(3) = 16*3 + 1 = 49.
		

Programs

  • Mathematica
    Table[1/16-1/(4+8n)^2,{n,0,40}]//Denominator (* or *) LinearRecurrence[ {3,-6,10,-12,12,-10,6,-3,1},{1,18,50,49,81,242,338,225,289},40] (* Harvey P. Dale, Aug 30 2021 *)

Formula

a(n) = A014695(n) * A016754(n).
a(n) = 16*A064038(n+1) + A014695(n).
a(n) = A061042(4+8*n).
a(2n+2) - a(2n+1) = 32*A026741(n+1).
G.f.: ( -1 - 15*x - 2*x^2 + 3*x^3 - 66*x^4 + 3*x^5 - 2*x^6 - 15*x^7 - x^8 ) / ( (x-1)^3*(x^2+1)^3 ). - R. J. Mathar, Jun 04 2013
a(n) = (3-sqrt(2)*cos((2*n+1)*Pi/4))*(2*n+1)^2/2. - Wesley Ivan Hurt, Oct 04 2018