cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-5 of 5 results.

A251801 T(n,k)=Number of (n+1)X(k+1) 0..3 arrays with no 2X2 subblock having x11-x00 less than x10-x01.

Original entry on oeis.org

150, 1080, 1740, 6627, 28932, 19269, 36552, 348679, 724300, 216912, 187000, 3352272, 17195593, 18577404, 2430631, 905440, 27291608, 294088336, 873945739, 474547100, 27278035, 4206453, 195753488, 3934266515, 26787273856, 44356434596
Offset: 1

Views

Author

R. H. Hardin, Dec 09 2014

Keywords

Comments

Table starts
.......150.........1080............6627.............36552..............187000
......1740........28932..........348679...........3352272............27291608
.....19269.......724300........17195593.........294088336..........3934266515
....216912.....18577404.......873945739.......26787273856........594938582014
...2430631....474547100.....44356434596.....2446811684440......90717637876583
..27278035..12140516092...2255553135793...224175608341756...13902663302194715
.305991368.310512400748.114701510008550.20552060379396424.2134102396738819286

Examples

			Some solutions for n=2 k=4
..0..2..0..0..2....0..2..2..3..1....0..0..0..3..3....0..0..2..1..1
..0..0..2..2..3....0..0..0..1..3....0..0..2..1..3....0..2..0..2..3
..2..2..1..3..3....0..1..3..2..2....0..0..1..3..3....2..0..3..3..3
		

Crossrefs

Column 1 is A184665
Row 1 is A223069(n+1)

Formula

Empirical for column k:
k=1: [linear recurrence of order 7]
k=2: [order 20]
Empirical for row n:
n=1: [linear recurrence of order 7]
n=2: [order 22]
n=3: [order 40]
n=4: [order 52]

A250544 T(n,k) = number of (n+1)X(k+1) 0..3 arrays with nondecreasing x(i,j)-x(i,j-1) in the i direction and nondecreasing x(i,j)-x(i-1,j) in the j direction.

Original entry on oeis.org

150, 1080, 1080, 6627, 10704, 6627, 36552, 79366, 79366, 36552, 187000, 491650, 644779, 491650, 187000, 905440, 2701872, 4169584, 4169584, 2701872, 905440, 4206453, 13657024, 23289547, 27240292, 23289547, 13657024, 4206453, 18933408
Offset: 1

Views

Author

R. H. Hardin, Nov 24 2014

Keywords

Comments

Peter Luschny remarks that the coefficients of the empirical recurrence relation for the column 1 are listed in the 9th row of A246117. - M. F. Hasler, Feb 11 2015

Examples

			Some solutions for n=2 k=4
..2..2..1..0..0....2..0..3..1..1....2..2..2..2..0....0..0..2..0..0
..2..3..2..2..2....0..0..3..2..2....2..2..2..2..0....1..1..3..1..1
..1..3..2..3..3....0..0..3..2..3....1..2..2..2..3....0..0..2..0..2
Table starts:
.......150.......1080........6627........36552........187000........905440
......1080......10704.......79366.......491650.......2701872......13657024
......6627......79366......644779......4169584......23289547.....117777788
.....36552.....491650.....4169584.....27240292.....151170400.....752602024
....187000....2701872....23289547....151170400.....824599694....4013192386
....905440...13657024...117777788....752602024....4013192386...19031828420
...4206453...64993652...555362165...3475227442...18064444143...83356429646
..18933408..295871112..2489782728..15210145612...76961701472..345394150196
..83153850.1302924116.10756619019..64036997144..315204675572.1375930596944
.358250280.5595784456.45218540866.262068107390.1254564769204.5328628464360
		

Crossrefs

Row/column 1 is A223069(n+1) and row/column 2 of A223071.
Row/column 2-7 are A250538 - A250543; diagonal is A250537.

Formula

Empirical for column k (k=2-7 recurrence also works for k=1):
k=1: a(n) = 16*a(n-1) -106*a(n-2) +376*a(n-3) -769*a(n-4) +904*a(n-5) -564*a(n-6) +144*a(n-7)
k=2: [order 16, see A250538]
k=3: [same order 16]
k=4: [same order 16]
k=5: [same order 16]
k=6: [same order 16]
k=7: [same order 16]

Extensions

Edited by M. F. Hasler, Feb 11 2015

A224123 T(n,k)=Number of nXk 0..3 arrays with row sums nondecreasing and column sums unimodal.

Original entry on oeis.org

4, 16, 10, 50, 150, 20, 130, 1747, 1080, 35, 296, 16782, 47059, 6627, 56, 610, 140210, 1703178, 1070499, 36552, 84, 1163, 1050460, 53355889, 145901795, 21632718, 187000, 120, 2083, 7227405, 1491827492, 17292618579, 11066001160, 400993828
Offset: 1

Views

Author

R. H. Hardin Mar 31 2013

Keywords

Comments

Table starts
...4......16.........50..........130...........296...........610
..10.....150.......1747........16782........140210.......1050460
..20....1080......47059......1703178......53355889....1491827492
..35....6627....1070499....145901795...17292618579.1830213565657
..56...36552...21632718..11066001160.4964366292229
..84..187000..400993828.766386005577
.120..905440.6962188526
.165.4206453
.220

Examples

			Some solutions for n=3 k=4
..0..2..2..0....2..0..0..1....2..2..0..0....0..2..3..0....0..0..2..1
..2..2..2..1....2..2..2..0....2..3..1..0....2..0..3..0....0..0..0..3
..2..3..1..3....0..2..2..3....0..2..2..3....0..3..2..0....0..1..3..3
		

Crossrefs

Column 1 is A000292(n+1)
Column 2 is A223069
Row 1 is A223659

A287532 Square array A(n,k), n >= 0, k >= 1, read by antidiagonals upwards, where A(n,k) = sum of unimodal products of length n and bound k.

Original entry on oeis.org

1, 1, 1, 1, 4, 1, 1, 11, 9, 1, 1, 26, 50, 16, 1, 1, 57, 222, 150, 25, 1, 1, 120, 867, 1080, 355, 36, 1, 1, 247, 3123, 6627, 3775, 721, 49, 1, 1, 502, 10660, 36552, 33502, 10626, 1316, 64, 1, 1, 1013, 35064, 187000, 262570, 128758, 25676, 2220, 81, 1
Offset: 0

Views

Author

Don Knuth, May 26 2017

Keywords

Comments

A unimodal product of length n and parameter k is a product of positive integers a_1 ... a_m ... a_n where a_1 <= ... <= a_m <= k and k >= a_m >= ... >= a_n; furthermore we consider each choice of m to give a distinct product, unless a_m=k. (See the example.)

Examples

			A(2,3)=50 because of the products 1*1,1*1,1*1 [m=0,1,2]; 1*2,1*2 [m=1,2]; 1*3; 2*1,2*1 [m=0,1]; 2*2,2*2,2*2 [m=0,1,2]; 2*3; 3*1; 3*2; 3*3; total 50.
Square array begins:
  n\k| 1,   2,    3,     4,      5,       6, ...
  ---+------------------------------------------
   0 | 1,   1,    1,     1,      1,       1, ...
   1 | 1,   4,    9,    16,     25,      36, ...
   2 | 1,  11,   50,   150,    355,     721, ...
   3 | 1,  26,  222,  1080,   3775,   10626, ...
   4 | 1,  57,  867,  6627,  33502,  128758, ...
   5 | 1, 120, 3123, 36552, 262570, 1360128, ...
  ...
		

Crossrefs

A(n,n) gives A383883.
Columns k=5..6 give A383892, A383893.

Programs

  • Mathematica
    f[k_]:=Product[1-j x,{j,k}]; A[n_,k_]:=Coefficient[Series[1/f[k]/f[k-1],{x,0,n}],x,n]
  • PARI
    a(n, k) = sum(j=0, n, stirling(j+k-1, k-1, 2)*stirling(n-j+k, k, 2)); \\ Seiichi Manyama, May 14 2025

Formula

A(n,k) is the coefficient of x^n in 1/((1-k*x) * (1-(k-1)*x)^2 * ... * (1-x)^2).
A(n,k) = Sum_{j=0..n} Stirling2(j+k-1,k-1) * Stirling2(n-j+k,k) for k >= 1. - Seiichi Manyama, May 14 2025

A255002 Coefficients of recurrence for rows and columns of A250544 and rows of A250691.

Original entry on oeis.org

-1, 30, -415, 3514, -20386, 85924, -272198, 661180, -1244717, 1822478, -2068955, 1802474, -1181760, 563888, -184752, 37152, -3456
Offset: 0

Views

Author

M. F. Hasler, Feb 11 2015

Keywords

Comments

The convention for signs and indices is such that A(n) = sum_{k=1..16} a(k)*A(n-k), where A is any row of A250691 (i.e., A250692 - A250698) or row or column of A250544 (i.e., A223069, A250538 - A250543).

Crossrefs

Programs

  • PARI
    Vecrev(-denominator(ggf(A250538=b2v(readvec("/tmp/b250538.txt"))))) \\ using the "guess generating function" and "b-file to vector" scripts found on the OEIS wiki
Showing 1-5 of 5 results.