A251801
T(n,k)=Number of (n+1)X(k+1) 0..3 arrays with no 2X2 subblock having x11-x00 less than x10-x01.
Original entry on oeis.org
150, 1080, 1740, 6627, 28932, 19269, 36552, 348679, 724300, 216912, 187000, 3352272, 17195593, 18577404, 2430631, 905440, 27291608, 294088336, 873945739, 474547100, 27278035, 4206453, 195753488, 3934266515, 26787273856, 44356434596
Offset: 1
Some solutions for n=2 k=4
..0..2..0..0..2....0..2..2..3..1....0..0..0..3..3....0..0..2..1..1
..0..0..2..2..3....0..0..0..1..3....0..0..2..1..3....0..2..0..2..3
..2..2..1..3..3....0..1..3..2..2....0..0..1..3..3....2..0..3..3..3
A250544
T(n,k) = number of (n+1)X(k+1) 0..3 arrays with nondecreasing x(i,j)-x(i,j-1) in the i direction and nondecreasing x(i,j)-x(i-1,j) in the j direction.
Original entry on oeis.org
150, 1080, 1080, 6627, 10704, 6627, 36552, 79366, 79366, 36552, 187000, 491650, 644779, 491650, 187000, 905440, 2701872, 4169584, 4169584, 2701872, 905440, 4206453, 13657024, 23289547, 27240292, 23289547, 13657024, 4206453, 18933408
Offset: 1
Some solutions for n=2 k=4
..2..2..1..0..0....2..0..3..1..1....2..2..2..2..0....0..0..2..0..0
..2..3..2..2..2....0..0..3..2..2....2..2..2..2..0....1..1..3..1..1
..1..3..2..3..3....0..0..3..2..3....1..2..2..2..3....0..0..2..0..2
Table starts:
.......150.......1080........6627........36552........187000........905440
......1080......10704.......79366.......491650.......2701872......13657024
......6627......79366......644779......4169584......23289547.....117777788
.....36552.....491650.....4169584.....27240292.....151170400.....752602024
....187000....2701872....23289547....151170400.....824599694....4013192386
....905440...13657024...117777788....752602024....4013192386...19031828420
...4206453...64993652...555362165...3475227442...18064444143...83356429646
..18933408..295871112..2489782728..15210145612...76961701472..345394150196
..83153850.1302924116.10756619019..64036997144..315204675572.1375930596944
.358250280.5595784456.45218540866.262068107390.1254564769204.5328628464360
A224123
T(n,k)=Number of nXk 0..3 arrays with row sums nondecreasing and column sums unimodal.
Original entry on oeis.org
4, 16, 10, 50, 150, 20, 130, 1747, 1080, 35, 296, 16782, 47059, 6627, 56, 610, 140210, 1703178, 1070499, 36552, 84, 1163, 1050460, 53355889, 145901795, 21632718, 187000, 120, 2083, 7227405, 1491827492, 17292618579, 11066001160, 400993828
Offset: 1
Some solutions for n=3 k=4
..0..2..2..0....2..0..0..1....2..2..0..0....0..2..3..0....0..0..2..1
..2..2..2..1....2..2..2..0....2..3..1..0....2..0..3..0....0..0..0..3
..2..3..1..3....0..2..2..3....0..2..2..3....0..3..2..0....0..1..3..3
A287532
Square array A(n,k), n >= 0, k >= 1, read by antidiagonals upwards, where A(n,k) = sum of unimodal products of length n and bound k.
Original entry on oeis.org
1, 1, 1, 1, 4, 1, 1, 11, 9, 1, 1, 26, 50, 16, 1, 1, 57, 222, 150, 25, 1, 1, 120, 867, 1080, 355, 36, 1, 1, 247, 3123, 6627, 3775, 721, 49, 1, 1, 502, 10660, 36552, 33502, 10626, 1316, 64, 1, 1, 1013, 35064, 187000, 262570, 128758, 25676, 2220, 81, 1
Offset: 0
A(2,3)=50 because of the products 1*1,1*1,1*1 [m=0,1,2]; 1*2,1*2 [m=1,2]; 1*3; 2*1,2*1 [m=0,1]; 2*2,2*2,2*2 [m=0,1,2]; 2*3; 3*1; 3*2; 3*3; total 50.
Square array begins:
n\k| 1, 2, 3, 4, 5, 6, ...
---+------------------------------------------
0 | 1, 1, 1, 1, 1, 1, ...
1 | 1, 4, 9, 16, 25, 36, ...
2 | 1, 11, 50, 150, 355, 721, ...
3 | 1, 26, 222, 1080, 3775, 10626, ...
4 | 1, 57, 867, 6627, 33502, 128758, ...
5 | 1, 120, 3123, 36552, 262570, 1360128, ...
...
-
f[k_]:=Product[1-j x,{j,k}]; A[n_,k_]:=Coefficient[Series[1/f[k]/f[k-1],{x,0,n}],x,n]
-
a(n, k) = sum(j=0, n, stirling(j+k-1, k-1, 2)*stirling(n-j+k, k, 2)); \\ Seiichi Manyama, May 14 2025
A255002
Coefficients of recurrence for rows and columns of A250544 and rows of A250691.
Original entry on oeis.org
-1, 30, -415, 3514, -20386, 85924, -272198, 661180, -1244717, 1822478, -2068955, 1802474, -1181760, 563888, -184752, 37152, -3456
Offset: 0
Showing 1-5 of 5 results.
Comments