A223143 G.f. satisfies: A(x)^3 = A(x^2)^3 + 9*x.
1, 3, -6, 27, -141, 819, -5022, 31968, -209202, 1398420, -9505854, 65499759, -456410943, 3210397173, -22763553876, 162524220984, -1167359075781, 8429107868541, -61148608627518, 445450238075655, -3257116365714831, 23896262127268719, -175854177039133998
Offset: 0
Keywords
Examples
G.f.: A(x) = 1 + 3*x - 6*x^2 + 27*x^3 - 141*x^4 + 819*x^5 - 5022*x^6 +... where A(x)^3 = 1 + 9*x + 9*x^2 + 9*x^4 + 9*x^8 + 9*x^16 + 9*x^32 +...+ 9*x^(2^n) +...
Links
- Paul D. Hanna, Table of n, a(n) for n = 0..300
Programs
-
PARI
{a(n)=local(A=1+x); for(i=1, #binary(n), A=(subst(A, x, x^2)^3+9*x+x*O(x^n))^(1/3)); polcoeff(A, n, x)} for(n=0,30,print1(a(n),", "))
Formula
G.f.: A(x) = ( 1 + Sum_{n>=0} 9*x^(2^n) )^(1/3).
Comments