cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A223701 Irregular triangle of numbers k such that prime(n) is the largest prime factor of k^2 - 1.

Original entry on oeis.org

3, 2, 5, 7, 17, 4, 9, 11, 19, 26, 31, 49, 161, 6, 8, 13, 15, 29, 41, 55, 71, 97, 99, 127, 244, 251, 449, 4801, 8749, 10, 21, 23, 34, 43, 65, 76, 89, 109, 111, 197, 199, 241, 351, 485, 769, 881, 1079, 6049, 19601, 12, 14, 25, 27, 51, 53, 64, 79, 129, 131, 155
Offset: 1

Views

Author

T. D. Noe, Apr 03 2013

Keywords

Comments

Note that the first number of each row forms the sequence 3, 2, 4, 6, 10, 12,..., which is A039915. The first 25 rows, except the first, are in A181447-A181470.

Examples

			Irregular triangle:
  {3},
  {2, 5, 7, 17},
  {4, 9, 11, 19, 26, 31, 49, 161},
  {6, 8, 13, 15, 29, 41, 55, 71, 97, 99, 127, 244, 251, 449, 4801, 8749}
		

Crossrefs

Row 26 is A181568.
Cf. A039915 (first terms), A175607 (last terms), A181471 (row lengths), A379344 (row sums).
Cf. A223702, A223703, A223704 (related tables).

Programs

  • Mathematica
    t = Table[FactorInteger[n^2 - 1][[-1,1]], {n, 2, 10^5}]; Table[1 + Flatten[Position[t, Prime[n]]], {n, 6}]

A223702 Irregular triangle of numbers k such that A002313(n), the n-th prime not congruent to 3 mod 4 is the largest prime factor of k^2 + 1.

Original entry on oeis.org

1, 2, 3, 7, 5, 8, 18, 57, 239, 4, 13, 21, 38, 47, 268, 12, 17, 41, 70, 99, 157, 307, 6, 31, 43, 68, 117, 191, 302, 327, 882, 18543, 9, 32, 73, 132, 278, 378, 829, 993, 2943, 23, 30, 83, 182, 242, 401, 447, 606, 931, 1143, 1772, 6118, 34208, 44179, 85353, 485298
Offset: 1

Views

Author

T. D. Noe, Apr 03 2013

Keywords

Comments

Note that primes of the form 4x+3 are not divisors.

Examples

			Irregular triangle:
   p | {k}
-----+---------------------------------
   2 | {1},
   5 | {2, 3, 7},
  13 | {5, 8, 18, 57, 239},
  17 | {4, 13, 21, 38, 47, 268},
  29 | {12, 17, 41, 70, 99, 157, 307},
  37 | {6, 31, 43, 68, 117, 191, 302, 327, 882, 18543},
  41 | {9, 32, 73, 132, 278, 378, 829, 993, 2943}
  ...
		

Crossrefs

Cf. A002313, A014442, A177979 (first terms), A185389 (last terms), A223705, A285283, A379346 (row lengths), A379347 (row sums).
Cf. A223701, A223703, A223704 (related tables).

Programs

  • Mathematica
    t = Table[FactorInteger[n^2 + 1][[-1,1]], {n, 10^5}]; Table[Flatten[Position[t, Prime[n]]], {n, 13}]

Extensions

Definition amended by Andrew Howroyd, Dec 22 2024
Showing 1-2 of 2 results.