cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A228315 Triangular array read by rows: T(n,k) is the number of rooted labeled simple graphs on {1,2,...,n} such that the root is in a component of size k; n>=1, 1<=k<=n.

Original entry on oeis.org

1, 2, 2, 6, 6, 12, 32, 24, 48, 152, 320, 160, 240, 760, 3640, 6144, 1920, 1920, 4560, 21840, 160224, 229376, 43008, 26880, 42560, 152880, 1121568, 13063792, 16777216, 1835008, 688128, 680960, 1630720, 8972544, 104510336, 2012388736
Offset: 1

Views

Author

Geoffrey Critzer, Aug 26 2013

Keywords

Comments

Row sums = A095340.
Column 1 = A123903.
T(n,k) = A223894(n,k)*k.
Diagonal = A053549.

Examples

			1;
2,    2;
6,    6,    12;
32,   24,   48,    152;
320,  160,  240,   760,    3640;
		

References

  • F. Harary and E. M. Palmer, Graphical Enumeration, Academic Press, 1973, page 7.

Crossrefs

Cf. A070166.

Programs

  • Maple
    b:= proc(n) option remember; `if`(n=0, 1, 2^(n*(n-1)/2)-
          add(k*binomial(n, k)* 2^((n-k)*(n-k-1)/2)*b(k), k=1..n-1)/n)
        end:
    T:= (n, k)-> binomial(n, k)*k*b(k)*2^((n-k)*(n-k-1)/2):
    seq(seq(T(n, k), k=1..n), n=1..10);  # Alois P. Heinz, Aug 26 2013
  • Mathematica
    nn = 10; g = Sum[2^Binomial[n, 2] x^n/n!, {n, 0, nn}]; a =
    Drop[Range[0, nn]! CoefficientList[Series[Log[g], {x, 0, nn}], x],
      1]; Table[
      Table[Binomial[n, k] k a[[k]] 2^Binomial[n - k, 2], {k, 1, n}], {n,
       1, 7}] // Grid

Formula

T(n,k) = binomial(n,k)*k*A001187(k)*A006125(n-k).

A237195 Number of simple labeled graphs on n nodes that contain some size k connected component, all of whose nodes are labeled with integers {1,2,...,k} for some k in {1,2,...,n}.

Original entry on oeis.org

1, 2, 7, 52, 846, 28628, 1928768, 255610528, 66822534992, 34632302913632, 35711543058158592, 73426371674544520192, 301419451958411673103360, 2472252535617096234970201088, 40532629372281642451697543062528, 1328660058258732602631909956943781888
Offset: 1

Views

Author

Geoffrey Critzer, Feb 04 2014

Keywords

Comments

In other words, a(n) is the number of simple labeled graphs on {1,2,...,n} such that 1 is an isolated node, or 1 and 2 form a size 2 component, or 1,2 and 3 form a size 3 component, or ... 1,2,3,...,k form a size k component, where 1<=k<=n.

Examples

			a(3) = 7. We count all 8 simple labeled graphs on {1,2,3} except: 1-3 2.
		

Programs

  • Maple
    b:= proc(n) option remember; `if`(n=0, 1, 2^(n*(n-1)/2)-
          add(k*binomial(n, k)* 2^((n-k)*(n-k-1)/2)*b(k), k=1..n-1)/n)
        end:
    a:= n-> add(b(k)*2^((n-k)*(n-k-1)/2), k=1..n):
    seq(a(n), n=1..20);  # Alois P. Heinz, Feb 04 2014
  • Mathematica
    nn=15;g=Sum[2^Binomial[n,2]x^n/n!,{n,0,nn}];a=Drop[Range[0,nn]!CoefficientList[Series[Log[g],{x,0,nn}],x],1];Map[Total,Table[Table[Drop[Transpose[Table[ Range[0,nn]!CoefficientList[Series[a[[n]]x^n/n! g,{x,0,nn}],x],{n,1,nn}]],1][[i,j]]/Binomial[i,j],{j,1,i}],{i,1,nn}]]

Formula

a(n) = Sum_{k=1..n} A223894(n,k)/binomial(n,k).

A224065 Triangular array read by rows. T(n,k) is the number of size k connected components over all simple unlabeled graphs with n nodes; n>=1,1<=k<=n.

Original entry on oeis.org

1, 2, 1, 4, 1, 2, 8, 3, 2, 6, 19, 5, 4, 6, 21, 53, 14, 10, 12, 21, 112, 209, 39, 24, 24, 42, 112, 853, 1253, 170, 72, 72, 84, 224, 853, 11117, 13599, 1083, 322, 210, 231, 448, 1706, 11117, 261080, 288267, 12516, 2112, 948, 735, 1232, 3412, 22234, 261080, 11716571
Offset: 1

Views

Author

Geoffrey Critzer, Mar 30 2013

Keywords

Comments

Row sums are A224031.
Column 1 is A006897.
T(n,n) is A001349.

Examples

			1,
2,     1,
4,     1,    2,
8,     3,    2,   6,
19,    5,    4,   6,   21,
53,    14,   10,  12,  21,  112,
209,   39,   24,  24,  42,  112, 853,
1253,  170,  72,  72,  84,  224, 853, 11117,
13599, 1083, 322, 210, 231, 448, 1706, 11117, 261080,
		

Crossrefs

Cf. A223894 (labeled version).

Programs

  • Mathematica
    nn=10;h[list_]:=Select[list,#>0&];f[list_]:=Total[Table[list[[i]]*(i-1),{i,1,Length[list]}]];g[x_]:=Sum[NumberOfGraphs[n]x^n,{n,0,nn}];c[x_]:=Sum[a[n]x^n,{n,0,nn}];a[0]=1;sol=SolveAlways[g[x]==Normal[Series[Product[1/(1-x^i)^a[i],{i,1,nn}],{x,0,nn}]],x];b=Drop[Flatten[Table[a[n],{n,0,nn}]/.sol],1];Map[h,Drop[Transpose[Table[Map[f,CoefficientList[Series[(1/(1-y x^n)^b[[n]])Product[1/(1- x^i)^b[[i]],{i,1,nn}](1-x^n)^b[[n]],{x,0,nn}],{x,y}]],{n,1,nn}]],1]]//Flatten

Formula

O.g.f. for column k is the derivative with respect to y then evaluated at y = 1 of (1/(1 - y*x^k))^A001349(k) * (1 - x^k)^A001349(k) * Product_{k>=1}1/(1 - x^k)^A001349(k).
Showing 1-3 of 3 results.