cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A223925 a(2n+1) = 2*n-1; a(2n)= 4^n.

Original entry on oeis.org

1, 4, 3, 16, 5, 64, 7, 256, 9, 1024, 11, 4096, 13, 16384, 15, 65536, 17, 262144, 19, 1048576, 21, 4194304, 23, 16777216, 25, 67108864, 27, 268435456, 29, 1073741824, 31
Offset: 1

Views

Author

Paul Curtz, Mar 29 2013

Keywords

Comments

If A132050(n) has offset 1 (proposed),
A132049(n)/A132050(n) = 2, 4, 3, 16/5, 25/8, 192/61,... leads to Pi (Euler, 1735)
A132049(n)/a(n) = (2/1=2, 4/4=1, 3/3=1, 16/16=1, 25/5=5, 192/64=3,... ). The second bisection 1, 1, 3, 17, 155, begins like A110501.
Conjecture: a(2n) is always a divisor of A132049(2n).

Crossrefs

Programs

  • Mathematica
    Table[ If[ OddQ[n], n, 4^(n/2)], {n, 1, 31}] (* Jean-François Alcover, Apr 02 2013 *)
    CoefficientList[Series[(1 + 4 x - 3 x^2 - 8 x^3 - 4 x^4 + 4 x^5) / ((1 - x)^2 (1 + x)^2 (1 - 2 x) (1 + 2 x)), {x, 0, 35}], x] (* Vincenzo Librandi, Jul 20 2013 *)
    LinearRecurrence[{0,6,0,-9,0,4},{1,4,3,16,5,64},40] (* Harvey P. Dale, Jul 30 2018 *)

Formula

G.f.: x*(1+4*x-3*x^2-8*x^3-4*x^4+4*x^5)/((1-x)^2*(1+x)^2*(1-2x)*(1+2x)). - Philippe Deléham, Apr 01 2013
a(n) = 6*a(n-2) -9*a(n-4) + 4*a(n-6) with a(1) = 1, a(2) = 4, a(3) = 3, a(4) = 16, a(5) = 5, a(6) = 64. - Philippe Deléham, Apr 01 2013

Extensions

Conjecture about A132049(n)/a(n) modified by Jean-François Alcover, Apr 12 2013