A224068 Number of labeled graphs on n vertices that can be colored using exactly 4 colors.
0, 0, 0, 1536, 122880, 10813440, 1348730880, 261070258176, 81787921367040, 42364317235937280, 36686317873382031360, 53408511909378681470976, 131046345314766385022238720, 542471805171085602081503969280, 3789399960645715708906355231293440
Offset: 1
Links
- R. C. Read, The number of k-colored graphs on labelled nodes, Canad. J. Math., 12 (1960), 410-414.
- R. P. Stanley, Acyclic orientation of graphs, Discrete Math., Volume 306, Issues 10-11, 28 May 2006, Pages 905-909.
- Eric Weisstein's World of Mathematics, k-Colorable Graph
- Wikipedia, Graph coloring
Programs
-
Mathematica
nn=20;e[x_]:=Sum[x^n/(n!*2^Binomial[n,2]),{n,0,nn}];Table[n!*2^Binomial[n,2],{n,0,nn}]CoefficientList[Series[(e[x]-1)^4,{x,0,nn}],x] (* Geoffrey Critzer, Aug 11 2014 *)
-
PARI
N=16; x='x+O('x^N); E=sum(n=0, N, x^n/(n!*2^binomial(n,2)) ); tgf=(E-1)^4; v=concat([0,0,0], Vec(tgf)); v=vector(#v, n, v[n] * n! * 2^(n*(n-1)/2) ) /* Joerg Arndt, Apr 10 2013 */
Formula
Let E(x) = Sum_{n>=0} x^n/(n!*2^C(n,2)) = 1 + x + x^2/(2!*2) + x^3/(3!*2^3) + x^4/(4!*2^6) + .... Then a generating function is (E(x) - 1)^4 = 1536*x^4/(4!*2^6) + 122880*x^5/(5!*2^10) + 10813440*x^6/(6!*2^15) + ... + a(n)*x^n/(n!*2^(n*(n-1)/2)) + ... (see Read).
Comments