A224102 Numerators of poly-Cauchy numbers of the second kind hat c_n^(2).
1, -1, 13, -43, 5647, -3401, 2763977, -10326059, 876576493, -1665984623, 1156096889861, -2220482068331, 75970695882225719, -1088498788093641, 855021689397409453, -3324381371618385007, 4010325276269988793421
Offset: 0
Links
- Vincenzo Librandi, Table of n, a(n) for n = 0..300
- Takao Komatsu, Poly-Cauchy numbers, RIMS Kokyuroku 1806 (2012)
- Takao Komatsu, Poly-Cauchy numbers with a q parameter, Ramanujan J. 31 (2013), 353-371.
- Takao Komatsu, Poly-Cauchy numbers, Kyushu J. Math. 67 (2013), 143-153.
- T. Komatsu, V. Laohakosol, K. Liptai, A generalization of poly-Cauchy numbers and its properties, Abstract and Applied Analysis, Volume 2013, Article ID 179841, 8 pages.
- Takao Komatsu, FZ Zhao, The log-convexity of the poly-Cauchy numbers, arXiv preprint arXiv:1603.06725, 2016
Programs
-
Mathematica
Table[Numerator[Sum[StirlingS1[n, k] (-1)^k/ (k + 1)^2, {k, 0, n}]], {n, 0, 25}]
-
PARI
a(n) = numerator(sum(k=0, n, stirling(n, k, 1)*(-1)^k/(k+1)^2)); \\ Michel Marcus, Nov 14 2015
Comments