cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A224102 Numerators of poly-Cauchy numbers of the second kind hat c_n^(2).

Original entry on oeis.org

1, -1, 13, -43, 5647, -3401, 2763977, -10326059, 876576493, -1665984623, 1156096889861, -2220482068331, 75970695882225719, -1088498788093641, 855021689397409453, -3324381371618385007, 4010325276269988793421
Offset: 0

Views

Author

Takao Komatsu, Mar 31 2013

Keywords

Comments

The poly-Cauchy numbers of the second kind hat c_n^(k) can be expressed in terms of the (unsigned) Stirling numbers of the first kind: hat c_n^(k) = (-1)^n*sum(abs(stirling1(n,m))/(m+1)^k, m=0..n).

Crossrefs

Cf. A002657, A223899, A219247 (denominators).

Programs

  • Mathematica
    Table[Numerator[Sum[StirlingS1[n, k] (-1)^k/ (k + 1)^2, {k, 0, n}]], {n, 0,
      25}]
  • PARI
    a(n) = numerator(sum(k=0, n, stirling(n, k, 1)*(-1)^k/(k+1)^2)); \\ Michel Marcus, Nov 14 2015