A224215 Number of nonnegative solutions to x^3 + y^3 + z^3 <= n^3.
1, 4, 11, 30, 66, 115, 200, 302, 441, 619, 829, 1085, 1395, 1771, 2200, 2666, 3228, 3843, 4564, 5351, 6185, 7143, 8158, 9349, 10526, 11934, 13375, 14896, 16652, 18381, 20370, 22411, 24629, 26963, 29406, 32101, 34840, 37766, 40920, 44164, 47587, 51200
Offset: 0
Keywords
Examples
For n=1, the four solutions are {0,0,0}, {0,0,1}, {0,1,0} and {1,0,0}, so a(1)=4.
Links
- David A. Corneth, Table of n, a(n) for n = 0..1500
- David A. Corneth, Pari prog
Crossrefs
Cf. A224214.
Programs
-
PARI
a(n) = n++; p = Pol((1/(1 - x))*sum(k=0, n, x^(k^3))^3 + O(x^(n^3))); polcoeff(p, (n-1)^3); \\ Michel Marcus, Apr 21 2018
-
PARI
\\ See PARI link. David A. Corneth, May 22 2018
-
Python
for a in range(99): n = a*a*a k = 0 for x in range(99): s = x*x*x if s>n: break for y in range(99): sy = s + y*y*y if sy>n: break for z in range(99): sz = sy + z*z*z if sz>n: break k+=1 print(k, end=',')
Formula
a(n) = [x^(n^3)] (1/(1 - x))*(Sum_{k>=0} x^(k^3))^3. - Ilya Gutkovskiy, Apr 20 2018