cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A224227 a(n) = (1/50)*((15*n^2-20*n+4)*Fibonacci(n) - (5*n^2-6*n)*A000032(n)).

Original entry on oeis.org

0, 0, 0, 1, 2, 7, 16, 38, 82, 173, 352, 701, 1368, 2628, 4980, 9329, 17302, 31811, 58040, 105178, 189446, 339373, 604964, 1073593, 1897488, 3341160, 5863080, 10256065, 17888138, 31115071, 53985856, 93447278, 161397754, 278184461, 478550344, 821734901, 1408610088, 2410719084, 4119433884, 7029086705, 11977419742, 20382654971, 34643298728, 58811818210
Offset: 0

Views

Author

N. J. A. Sloane, Apr 09 2013

Keywords

Comments

The right-hand side of a binomial-coefficient identity.
From Steven Finch, Mar 22 2020: (Start)
a(n+2) is the total binary weight squared of all A000045(n+2) binary sequences of length n not containing any adjacent 1's.
The only three 2-bitstrings without adjacent 1's are 00, 01 and 10. The bitsums squared of these are 0, 1 and 1. Adding these give a(4)=2.
The only five 3-bitstrings without adjacent 1's are 000, 001, 010, 100 and 101. The bitsums squared of these are 0, 1, 1, 1 and 4. Adding these give a(5)=7.
The only eight 4-bitstrings without adjacent 1's are 0000, 0001, 0010, 0100, 1000, 0101, 1010 and 1001. The bitsums squared of these are 0, 1, 1, 1, 1, 4, 4, and 4. Adding these give a(6)=16. (End)

Crossrefs

Programs

  • Mathematica
    LinearRecurrence[{3,0,-5,0,3,1},{0,0,0,1,2,7},50] (* Harvey P. Dale, Jan 22 2016 *)
    Table[((15 n^2 - 20 n + 4) Fibonacci[n] - (5 n - 6) n LucasL[n])/50, {n, 0, 30}] (* Vladimir Reshetnikov, Oct 10 2016 *)
  • PARI
    concat([0,0,0],Vec((x^2-x+1)/(x^2+x-1)^3+O(x^96))) \\ Charles R Greathouse IV, Mar 19 2014

Formula

a(n) = Sum_{k=0..n-1} k^2*binomial(n-k-1,k).
G.f.: -x^3*(x^2-x+1)/(x^2+x-1)^3. - Mark van Hoeij, Apr 10 2013
a(n+3) = A001628(n) - A001628(n-1) + A001628(n-2). - R. J. Mathar, May 23 2014
E.g.f.: 2*exp(x/2)*(sqrt(5)*(2 + 5*x^2)*sinh(sqrt(5)*x/2) - 5*x*cosh(sqrt(5)*x/2))/125. - Stefano Spezia, Mar 20 2023