A224227 a(n) = (1/50)*((15*n^2-20*n+4)*Fibonacci(n) - (5*n^2-6*n)*A000032(n)).
0, 0, 0, 1, 2, 7, 16, 38, 82, 173, 352, 701, 1368, 2628, 4980, 9329, 17302, 31811, 58040, 105178, 189446, 339373, 604964, 1073593, 1897488, 3341160, 5863080, 10256065, 17888138, 31115071, 53985856, 93447278, 161397754, 278184461, 478550344, 821734901, 1408610088, 2410719084, 4119433884, 7029086705, 11977419742, 20382654971, 34643298728, 58811818210
Offset: 0
Links
- Steven Finch, Cantor-solus and Cantor-multus Distributions, arXiv:2003.09458 [math.CO], 2020.
- N. Gauthier (Proposer), Problem H-703, Fib. Quart., 50 (2012), 379-381.
- Index entries for linear recurrences with constant coefficients, signature (3,0,-5,0,3,1).
Programs
-
Mathematica
LinearRecurrence[{3,0,-5,0,3,1},{0,0,0,1,2,7},50] (* Harvey P. Dale, Jan 22 2016 *) Table[((15 n^2 - 20 n + 4) Fibonacci[n] - (5 n - 6) n LucasL[n])/50, {n, 0, 30}] (* Vladimir Reshetnikov, Oct 10 2016 *)
-
PARI
concat([0,0,0],Vec((x^2-x+1)/(x^2+x-1)^3+O(x^96))) \\ Charles R Greathouse IV, Mar 19 2014
Formula
a(n) = Sum_{k=0..n-1} k^2*binomial(n-k-1,k).
G.f.: -x^3*(x^2-x+1)/(x^2+x-1)^3. - Mark van Hoeij, Apr 10 2013
E.g.f.: 2*exp(x/2)*(sqrt(5)*(2 + 5*x^2)*sinh(sqrt(5)*x/2) - 5*x*cosh(sqrt(5)*x/2))/125. - Stefano Spezia, Mar 20 2023
Comments