A227626 Consider the spiral of Theodorus (A072895). This sequence is closely related to A224269 and gives the number of k successive revolutions such that the triangles are closer to 360 degrees than any previous triangles.
1, 2, 4, 6, 22, 30, 45, 53, 211, 242, 429, 554, 917, 1239, 1738, 2161, 2986, 3005, 3101, 3307, 4800, 6385, 7308, 15148, 16668, 19287, 28103, 72754, 143406, 457425, 955117, 1129313, 2290339, 7362039, 11374333, 11711400, 11778444, 11896240, 14221855, 31972242
Offset: 1
Keywords
Links
- Herbert Kociemba, The Spiral of Theodorus
Programs
-
Mathematica
k=minDist=1; lst={}; K=-2.1577829966594462209291427868295777235; num[n_] := Module[{a=-(K/2)+n Pi,b}, b=a^2-1/6; If[Floor[b]==Floor[b+1/(144 a^2)], Floor[b], Undefined]] While[k<40000000, n=num[k]; If[!NumberQ[n], Print[k," Stop"]; Break[]]; a=2Pi-Mod[K+2 Sqrt[n]+1/(6 Sqrt[n]),2Pi]; b=Mod[K+2 Sqrt[n+1]+1/(6 Sqrt[n+1]),2Pi]; If[a
Comments